Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T01:16:01.659Z Has data issue: false hasContentIssue false

Historical Perspectives on Exceptional Climatic Years at the Labrador/Nunatsiavut Coast 1780 to 1950

Published online by Cambridge University Press:  28 December 2020

Marie-Michèle Ouellet-Bernier*
Affiliation:
Institut des sciences de l'environnement, Université du Québec à Montréal, Montréal, QuébecH3C 3P8Canada Geotop Research center on the Dynamics of the Earth System, Université du Québec à Montréal, Montréal, QuébecH3C 3P8Canada International Laboratory for Research on Images of the North, Winter and the Arctic, Université du Québec à Montréal, Montréal, QuébecH3C 3P8Canada
Anne de Vernal
Affiliation:
Institut des sciences de l'environnement, Université du Québec à Montréal, Montréal, QuébecH3C 3P8Canada Geotop Research center on the Dynamics of the Earth System, Université du Québec à Montréal, Montréal, QuébecH3C 3P8Canada Département des sciences de la Terre et de l'atmosphère, Université du Québec à Montréal, Montréal, QuébecH3C 3P8Canada
Daniel Chartier
Affiliation:
Département d’études littéraires, Université du Québec à Montréal, Montréal, QuébecH3C 3P8Canada International Laboratory for Research on Images of the North, Winter and the Arctic, Université du Québec à Montréal, Montréal, QuébecH3C 3P8Canada
Étienne Boucher
Affiliation:
Institut des sciences de l'environnement, Université du Québec à Montréal, Montréal, QuébecH3C 3P8Canada Geotop Research center on the Dynamics of the Earth System, Université du Québec à Montréal, Montréal, QuébecH3C 3P8Canada Département de géographie, Université du Québec à Montréal, Montréal, QuébecH3C 3P8Canada Centre d'Études Nordiques, Université Laval, Québec, QuébecG1V 0A6Canada
*
*Corresponding author email address: ouellet.bernier.mm@gmail.com

Abstract

This interdisciplinary study presents a human perspective on climatic variations by combining documentary, discursive, instrumental, and proxy data. Historical sources were used to characterize climate variations along the coast of Labrador/Nunatsiavut during the 19th century and the first half of the 20th century. Written and early instrumental archives provided original information on the state and perception of climate before the establishment of meteorological stations, which permitted an intra-annual perspective on climatic variations. Written sources depicted the sensitivity of humans to climatic variations. Exceptional seasonal climatic events were extracted from documentary and discursive sources, which were complemented by tree-ring and early instrumental data. From 1780 to 1900, data indicated a succession of relatively warm and cold episodes. Most warm periods were described as stormy and variable. The final part of the studied records showed cold conditions from 1900 to 1925 and warm conditions from 1925 to 1950. Historical sources helped to discriminate a seasonal signal. Mild autumn-winter conditions were recorded since 1910 in relation with positive anomalies of the North Atlantic Oscillation in winter. Relatively warm spring-summer conditions were recorded after 1920, which corresponds to a phase of positive anomaly of the Atlantic Multidecadal Oscillation.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banfield, C., 1981. The climatic environment of Newfoundland. In: Macpherson, A.G., Macpherson, J.B. (Eds.), The Natural Environment of Newfoundland, Past and Present. Department of Geography, Memorial University of Newfoundland, St. John's, pp. 83153.Google Scholar
Banfield, C.E., Jacobs, J.D., 1998. Regional patterns of temperature and precipitation for Newfoundland and Labrador during the past century. Canadian Geographer/Le Géographe canadien 42, 354364. https://doi.org/10.1111/j.1541-0064.1998.tb01351.x.CrossRefGoogle Scholar
Behringer, W., 2010. A Cultural History of Climate. Polity Press, Cambridge, UK, 280 pp.Google Scholar
Birkel, S.D., Mayewski, P.A., Maasch, K.A., Kurbatov, A.V., and Lyon, B., 2018. Evidence for a volcanic underpinning of the Atlantic multidecadal oscillation. NPJ Climate and Atmospheric Science, 1, 17. https://doi.org/10.1038/s41612-018-0036-6.CrossRefGoogle Scholar
Blake, T.L., 1977. The Diary of Thomas L. Blake, 1883–1890. Them Days, Happy Valley-Goose Bay, NL, 80 pp.Google Scholar
Boucher, E., Nicault, A., Arseneault, D., Bégin, Y., Karami, M.P., 2017. Decadal variations in Eastern Canada'staiga wood biomass production forced by ocean-atmosphere interactions. Scientific Reports 7 (1), 113.10.1038/s41598-017-02580-9CrossRefGoogle ScholarPubMed
Box, J.E., 2002. Survey of Greenland instrumental temperature records: 1873–2001. International Journal of Climatology 22, 18291847. https://doi.org/10.1002/joc.852.CrossRefGoogle Scholar
Brázdil, R., Pfister, C., Wanner, H., Von Storch, H., Luterbacher, J., 2005. Historical climatology in Europe—the state of the art. Climatic change 70, 363430. https://doi.org/10.1007/s10584-005-5924-1.CrossRefGoogle Scholar
Brice-Bennett, C., 1981. Two opinions: Inuit and Moravian missionaries in Labrador, 1804–1860. Master thesis, Department of Anthropology, Memorial University of Newfoundland, St. John's.Google Scholar
Brice-Bennett, C., 1996. The Northlanders: A history of the population, socio-economic relations and cultural change of Inuit occupying the remote northern coast of Labrador. Unpublished report, Labrador Inuit Association, Nain, Labrador, Canada.Google Scholar
Brice-Bennett, C., 2017. Dispossessed. The Eviction of Inuit from Hebron, Labrador. Imaginaire Nord, Montréal.Google Scholar
Brönnimann, S., White, S., Slonosky, V., 2018. Climate from 1800 to 1970 in North America and Europe. In: White, S., Pfister, C., Mauelshagen, F. (Eds.), The Palgrave Handbook of Climate History. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-43020-5_25.Google Scholar
Browne, P.W., 1909. Where the Fishers Go: The Story of Labrador. Cochrane Publishing Company, New York, 406 pp.Google Scholar
Brown, R., Lemay, M., Allard, M., Barrand, N., Barrette, C., Bégin, Y., et al. ., 2012. Climate variability and change in the Canadian Eastern Subarctic IRIS region (Nunavik and Nunatsiavut). In: Allard, M., Lemay, M. (Eds), Nunavik and Nunatsiavut: From Science to Policy. An Integrated Regional Impact Study (IRIS) of Climate Change and Modernization. ArcticNet Inc., Quebec City, pp. 5793.Google Scholar
Burgel, A., 2018. We All Expected to Die: Spanish Influenza in Labrador, 1918–1919. ISER Books, St-John's, 392 pp.Google Scholar
Cappelen, J., Vinther, B.M., 2014. SW Greenland temperature data 1784–2013. Danish Meteorological Institute, Technical Report, 14-06, p. 11. http://www.dmi.dk/fileadmin/Rapporter/TR/tr14-06.pdfGoogle Scholar
Cartwright, G., 1792. A Journal of Transactions and Events During a Residence of Nearly Sixteen Years on the Coast of Labrador. Allin and Ridge, Newark, NJ, 239 pp.Google Scholar
Catchpole, A., Moodie, D., 1978. Archives and the environmental scientist. Archivaria 6, 113136.Google Scholar
Chartier, D., 2007. Towards a Grammar of the Idea of North. Nordicity, Winterity. Nordlit 22, 3547. https://doi.org/10.7557/13.1498.CrossRefGoogle Scholar
Chartier, D., 2019. What is the "Imagined North"? Ethical principles. Imaginaire Nord and Arctic Arts Summit, coll. Montreal and Harstad, pp. 157.Google Scholar
Crane, R.G., 1978. Seasonal variations of sea-ice extent in the Davis Strait-Labrador Sea area and relationships with synoptic-scale atmospheric circulation. Arctic 31, 413517. https://doi.org/10.14430/arctic2671.CrossRefGoogle Scholar
Crowley, T.J., 2000. Causes of climate change over the past 1000 years. Science 289, 270277. https://doi.org/10.1126/science.289.5477.270.CrossRefGoogle ScholarPubMed
Cunsolo Willox, A., Harper, S., Edge, V., Landman, K., Houle, K., Ford, J., Government, R.I.C., 2013. ‘The land enriches the soul:’ on environmental change, affect, and emotional health and well-being in Nunatsiavut, Canada. Emotion, Space and Society 6, 1424. https://doi.org/10.1016/j.emospa.2011.08.005.CrossRefGoogle Scholar
Cunsolo Willox, A., Harper, S.L., Ford, J.D., Landman, K., Houle, K., Edge, V.L., 2012. ‘From this place and of this place:’ climate change, sense of place, and health in Nunatsiavut, Canada. Social science and medicine 75, 538547. https://doi.org/10.1016/j.socscimed.2012.03.043.CrossRefGoogle Scholar
Curry, J.A., Schramm, J.L., and Ebert, E.E., 1995. Sea-ice-albedo climate feedback mechanism. Journal of Climate 8, 240247.10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
D'Arrigo, R.D., Buckley, B., Kaplan, S., Woollett, J., 2003. Interannual to multidecadal modes of Labrador climate variability inferred from tree rings. Climate Dynamics 20, 219228. https://doi.org/10.1007/s00382-002-0275-3.CrossRefGoogle Scholar
D'Arrigo, R.D., Cook, E.R., Jacoby, G.C., 1996. Annual to decadal-scale variations in northwest Atlantic sector temperatures inferred from Labrador tree rings. Canadian Journal of Forest Research 26, 143148. https://doi.org/10.1139/x26-015.CrossRefGoogle Scholar
Demarée, G.R., Ogilvie, A.E., 2008. The Moravian missionaries at the Labrador coast and their centuries-long contribution to instrumental meteorological observations. Climatic change 91, 423450. https://doi.org/10.1007/s10584-008-9420-2.CrossRefGoogle Scholar
Demarée, G.R., Ogilvie, A.E., 2011. Climate-related information in Labrador/Nunatsiavut: evidence from Moravian missionary journals. Bulletin des Séances-Mededelingen der Zittingen, Académie Royale des Sciences d'Outre-Mer–Koninklijke Academie voor Overzeese Wetenschappen 57, 391408.Google Scholar
Deser, C., Holland, M., Reverdin, G., Timlin, M., 2002. Decadal variations in Labrador Sea-ice cover and North Atlantic sea surface temperatures. Journal of Geophysical Research 107, 3-13-12. https://doi.org/10.1029/2000JC000683.CrossRefGoogle Scholar
Döll, L., 1937. Klima und wetter an der Kuste von Labrador. Archiv der Deutschen Seewarte 57, p. 121.Google Scholar
Drinkwater, K.F., 1996. Atmospheric and oceanic variability in the Northwest Atlantic during the 1980s and early 1990s. Journal of Northwest Atlantic Fishery Science 18, 7797. https://doi.org/10.2960/J.v18.a6.CrossRefGoogle Scholar
Enfield, D.B., Mestas-Nuñez, A.M., Trimble, P.J., 2001. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophysical Research Letters 28, 20772080. https://doi.org/10.1029/2000GL012745.CrossRefGoogle Scholar
Environment Canada, 2017. Historical Data, Nain. Government of Canada.Google Scholar
Finnis, J., Bell, T., 2015. An analysis of recent observed climate trends and variability in Labrador. Canadian Geographer/Le Géographe canadien 59, 151 166.10.1111/cag.12155CrossRefGoogle Scholar
Gautier, J.A., 1879. Commentaries on the Meteorological Observations by Moravian Missionaries on the Labrador Coast, St. John's. Memorial University of Newfoundland, Centre for Newfoundland Studies, 30 pp.Google Scholar
Gordon, H., 1972. The Labrador Parson, Journal of the Reverend Henry Gordon, 1915–1925. Transcript by Gill, F. Burnham, St. John's, 254 pp.Google Scholar
Grenfell, W.T., 1911. Down North on the Labrador. Fleming H. Revell Company, New York, Chicago, Toronto, London, Edinburgh, 229 pp.Google Scholar
Haldon, J., Roberts, N., Izdebski, A., Fleitmann, D., McCormick, M., et al. , 2014. The climate and environment of Byzantine Anatolia: integrating science, history, and archaeology. Journal of Interdisciplinary History 45, 113161. https://doi.org/10.1162/JINH_a_00682.CrossRefGoogle Scholar
Harrington, C.R. (Ed.), 1992. The Year Without a Summer? World Climate in 1816. Canadian Museum of Nature, Ottawa, 576 pp.Google Scholar
Hurrell, J.W., 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676679. https://doi.org/10.1126/science.269.5224.676.CrossRefGoogle ScholarPubMed
Hurrell, J.W., Deser, C., 2010. North Atlantic climate variability: the role of the North Atlantic Oscillation. Journal of Marine Systems 79, 231244. https://doi.org/10.1016/j.jmarsys.2009.11.002.CrossRefGoogle Scholar
Jacoby, G.C., D'Arrigo, R.D., 1995. Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochemical Cycles 9, 227234. https://doi.org/10.1029/95GB00321.CrossRefGoogle Scholar
Johannessen, O.M., Bengtsson, L., Miles, M.W., Kuzmina, S.I., Semenov, V.A., et al. , 2004. Arctic climate change: observed and modeled temperature and sea-ice variability. Tellus A: Dynamic Meteorology and Oceanography 56, 328341. https://doi.org/10.1111/j.1600-0870.2004.00060.x.CrossRefGoogle Scholar
Jones, P.D., Jónsson, T., Wheeler, D., 1997. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. International Journal of Climatology 17, 14331450. https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P.3.0.CO;2-P>CrossRefGoogle Scholar
Kaspar, F., Tinz, B., Mächel, H., Gates, L., 2015. Data rescue of national and international meteorological observations at Deutscher Wetterdienst. Advances in Science and Research 12, 5761. https://doi.org/10.5194/asr-12-57-2015.CrossRefGoogle Scholar
Kerr, R.A., 2000. A North Atlantic climate pacemaker for the centuries. Science 288, 19841985. https://doi.org/10.1126/science.288.5473.1984.CrossRefGoogle ScholarPubMed
Kieke, D., Yashayaev, I., 2015. Studies of Labrador sea water formation and variability in the subpolar North Atlantic in the light of international partnership and collaboration. Progress in Oceanography 132, 220232. https://doi.org/10.1016/j.pocean.2014.12.010.CrossRefGoogle Scholar
Kvamstø, N.G., Skeie, P., Stephenson, D.B., 2004. Impact of Labrador sea-ice extent on the North Atlantic Oscillation. International Journal of Climatology 24, 603612. https://doi.org/10.1002/joc.1015.CrossRefGoogle Scholar
Lemus-Lauzon, I., Bhiry, N., Arseneault, D., Woollett, J., Delwaide, A., 2018. Tree-ring evidence of changes in the subarctic forest cover linked to human disturbance in northern Labrador (Canada). Ecoscience 25, 135151. https://doi.org/10.1080/11956860.2018.1436244.CrossRefGoogle Scholar
Levac, E., de Vernal, A., 1997. Postglacial changes of terrestrial and marine environments along the Labrador coast: palynological evidence from cores 91-045-005 and 91-045-006, Cartwright Saddle. Canadian Journal of Earth Sciences 34, 13581365. https://doi.org/10.1139/e17-108.CrossRefGoogle Scholar
Lüdecke, C., 2005. East meets west: meteorological observations in Greenland and Labrador since the 18th century. History of Meteorology 2, 123132.Google Scholar
Marko, S., Fissel, D., Wadhams, P., Kelly, P., Brown, R., 1994. Iceberg severity of eastern North America: its relationship to sea-ice variability and climate change. Journal of Climate 7, 13351351.10.1175/1520-0442(1994)007<1335:ISOENA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
IPCC, 2018. Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., et al. (Eds.), Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. https://www.ipcc.ch/sr15/.Google Scholar
McCarroll, D., Jalkanen, R., Hicks, S., Tuovinen, M., Gagen, M., Pawellek, F., Eckstein, D., Schmitt, U., Autio, J., Heikkinen, O., 2003. Multiproxy dendroclimatology: a pilot study in northern Finland. The Holocene 13, 829838. https://doi.org/10.1191/0959683603hl668rp.CrossRefGoogle Scholar
Merrick, E., 1992. The Long Crossing and Other Labrador Stories. University of Maine Press, Orono, ME, 136 pp.Google Scholar
Merrick, E., 1998. The Northern Nurse. Countryman Press, Woodstock, VT, 314 pp. [original work published 1942]Google Scholar
Metzger, A., 2013. Art et science des nuages au Siècle d'or hollandais. Géographie et cultures 85, 87109.10.4000/gc.2769CrossRefGoogle Scholar
Miles, M.W., Divine, D.V., Furevik, T., Jansen, E., Moros, M., Ogilvie, A.E., 2014. A signal of persistent Atlantic multidecadal variability in Arctic sea-ice. Geophysical Research Letters 41, 463469. https://doi.org/10.1002/2013GL058084.CrossRefGoogle Scholar
Moravian Brethren, 1877. Brief Account of the Missionary Ships Employed in the Service of the Mission on the Coast of Labrador, from the Year 1770 to 1877. London, Printed by Norman and Son, for the Brethren's Society for the Furtherance of the Gospel, 26 pp.Google Scholar
Nasri, B.R., Boucher, É., Perreault, L., Rémillard, B.N., Huard, D., Nicault, A., Members of ARCHIVES-PERSISTENCE projects, 2020. Modeling hydrological inflow persistence using paleoclimate reconstructions on the Québec-Labrador (Canada) Peninsula. Water Resources Research 56, e2019WR025122. https://doi.org/10.1029/2019WR025122.CrossRefGoogle Scholar
PAGES 2k Consortium (Neukom, R., Barboza, L.A., Erb, M.P., Shi, F., Emile-Geay, J., et al. ), 2019. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nature Geoscience 12, 643649. https://doi.org/10.1038/s41561-019-0400-0.Google Scholar
Newell, J.P., 1983. Preliminary analysis of sea-ice conditions in the Labrador Sea during the nineteenth century. In: Harington, C.R. (Ed.), Climatic Change in Canada 3. Syllogeus 49, 108129.Google Scholar
Newell, J.P., 1990. Spring and Summer Sea-ice and Climate Conditions in the Labrador Sea, 1800–Present. Ph.D., Dissertation. University of Colorado, Boulder, CO.Google Scholar
Newell, J.P., 1992. The climate of the Labrador Sea in the spring and summer of 1816, and comparisons with modern analogues. In: Harington, C.R. (Ed.), The Year Without a Summer? World Climate in 1816. Canadian Museum of Nature, Ottawa, pp. 245254.Google Scholar
Nicault, A., Boucher, E., Tapsoba, D., Arseneault, D., Berninger, F., et al. , 2014. Spatial analysis of black spruce (Picea mariana (Mill.) BSP) radial growth response to climate in northern Québec—Labrador Peninsula, Canada. Canadian Journal of Forest Research 45, 343352. https://doi.org/10.1139/cjfr-2014-0080.CrossRefGoogle Scholar
Ogilvie, A.E.J., Jónsson, T., 2001. “Little Ice Age” research: a perspective from Iceland. Climatic Change 48, 952. https://doi.org/10.1023/A:1005625729889.CrossRefGoogle Scholar
Ouellet-Bernier, M.-M., de Vernal, A., 2018. Proxy Indicators of Climate in the Past. In: Chiotis, E. (Ed.), Climate Changes in the Holocene: Impacts and Human Adaptation. CRC Press, Boca Raton, FL, pp. 4176. https://doi.org/10.1201/9781351260244.CrossRefGoogle Scholar
Packard, A.S., 1891. The Labrador Coast: A Journal of Two Summer Cruises to that Region. N.D.C. Hodges, New York, 558 pp.CrossRefGoogle Scholar
Parfitt, R., Ummenhofer, C.C., Buckley, B.M., Hansen, K.G., D'Arrigo, R.D., 2020. Distinct seasonal climate drivers revealed in a network of tree-ring records from Labrador, Canada. Climate Dynamics 54, 18971911. https://doi.org/10.1007/s00382-019-05092-6.CrossRefGoogle Scholar
Peacock, F.W., 1986. Reflections from a Snowhouse. Jesperson Press, St.John's, 163 pp.Google Scholar
Periodical Accounts [PA], 1790–1961. Periodical accounts relating to the missions of the Church of the United Brethren established among the heathen. Brethren's Society for the Furtherance of the Gospel, London, 169 volumes.Google Scholar
Prichard, H.H., 1911. Through Trackless Labrador. William Heinemann, London, 254 pp.Google Scholar
Rémillard, B., 2013. Chapter 10.2 of Statistical Methods for Financial Engineering Chapman and Hall/CRC Financial Mathematics Series, Taylor and Francis Inc., Washington.Google Scholar
Richerol, T., Fréchette, B., Rochon, A., Pienitz, R., 2016. Holocene climate history of the Nunatsiavut (northern Labrador, Canada) established from pollen and dinoflagellate cyst assemblages covering the past 7000 years. The Holocene 26, 4460. https://doi.org/10.1177/0959683615596823.CrossRefGoogle Scholar
Robinson, P.J., 2005. Ice and snow in paintings of Little Ice Age winters. Weather 60, 3741. https://doi.org/10.1256/wea.164.03.CrossRefGoogle Scholar
Roy, N., Bhiry, N., Woollett, J., Delwaide, A., 2017. A 550-year record of the disturbance history of white spruce forests near two Inuit settlements in Labrador, Canada. Journal of the North Atlantic 31, 114. https://doi.org/10.3721/037.006.3101.CrossRefGoogle Scholar
Schweingruber, F.H., 2002. NOAA/WDS Paleoclimatology - Schweingruber - Dorothea Lake - PCGL - ITRDB CANA049, Mountain Lake Newfoundland - PCGL - ITRDB CANA050, Mountain Lake Newfoundland Ufe - PCGL - ITRDB CANA051. NOAA National Centers for Environmental Information. https://doi.org/10.25921/xzmh-bx98. Accessed [October 22, 2019]CrossRefGoogle Scholar
Sicre, M.A., Hall, I.R., Mignot, J., Khodri, M., Ezat, U., Truong, M.X., Eiriksson, J, Knudsen, K.L., 2011. Sea surface temperature variability in the subpolar Atlantic over the last two millennia. Paleoceanography 26, PA4218. https://doi.org/10.1029/2011PA002169.CrossRefGoogle Scholar
Sicre, M.A., Weckström, K., Seidenkrantz, M.S., Kuijpers, A., Benetti, M., et al. , 2014. Labrador current variability over the last 2000 years. Earth and Planetary Science Letters 400, 2632. https://doi.org/10.1016/j.epsl.2014.05.016.CrossRefGoogle Scholar
Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., et al. , 2015. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nature Geoscience 8, 784788. https://doi.org/10.1038/NGEO2526.CrossRefGoogle Scholar
Taylor, C., 1981. First International Polar Year, 1882–83. Arctic 34, 370376. https://www.jstor.org/stable/40509211.CrossRefGoogle Scholar
Them Days (Ed.), 2015. Nunatsiavut. Them Days, Happy Valley-Goose Bay, 196 pp.Google Scholar
Tinz, B., Leiding, T., Sedlatschek, R., Otten-Balaccanu, H., Gates, L., Gloeden, W., Rosenhagen, G., Röhrbein, D., 2015. Quality control of marine meteorological data with validat. Internal Deutscher Wetterdienst document, 28 pp.Google Scholar
Unknown Author, 1832. Battle Harbour – 1832. Them Days 6, 3442 and 34–46.Google Scholar
Vinther, B.M., Andersen, K.K., Jones, P.D., Briffa, K.R., Cappelen, J., 2006. Extending Greenland temperature records into the late eighteenth century. Journal of Geophysical Research 111, D11105. doi:10.1029/2005JD006810.CrossRefGoogle Scholar
Walter, F., 2014. Hiver. Histoire d'une saison. Éditions Payot & Rivages, coll. "Histoire Payot", Paris, pp. 464.Google Scholar
Way, R.G., Viau, A.E., 2015. Natural and forced air temperature variability in the Labrador region of Canada during the past century. Theoretical and Applied Climatology 121, 413424. https://doi.org/10.1007/s00704-014-1248-2.CrossRefGoogle Scholar
White, S., Pfister, C., Mauelshagen, F. (Eds.), 2018. The Palgrave Handbook of Climate History. Palgrave Macmillan, London, 651 pp. https://doi.org/10.1057/978-1-137-43020-5_1.CrossRefGoogle Scholar
Wolf, J., Allice, I., Bell, T., 2013. Values, climate change, and implications for adaptation: evidence from two communities in Labrador, Canada. Global Environmental Change 23, 548562. https://doi.org/10.1016/j.gloenvcha.2012.11.007.CrossRefGoogle Scholar
Woollett, J., 2007. Labrador Inuit subsistence in the context of environmental change: an initial landscape history perspective. American Anthropologist 109, 6984. https://doi.org/10.1525/aa.2007.109.1.69.CrossRefGoogle Scholar