Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access December 31, 2020

Trace Operators on Regular Trees

  • Pekka Koskela EMAIL logo , Khanh Ngoc Nguyen and Zhuang Wang

Abstract

We consider different notions of boundary traces for functions in Sobolev spaces defined on regular trees and show that the almost everywhere existence of these traces is independent of the chosen definition of a trace.

MSC 2010: 46E35; 31E05

References

[1] A. Björn, J. Björn, Nonlinear potential theory on metric spaces. EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zürich, 2011.10.4171/099Search in Google Scholar

[2] A. Björn, J. Björn, J. T. Gill and N. Shanmugalingam, Geometric analysis on Cantor sets and trees, J. Reine Angew. Math. 725 (2017), 63-114.Search in Google Scholar

[3] M. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, 1999. xxii+643 pp.10.1007/978-3-662-12494-9Search in Google Scholar

[4] V. Buffa, J. M. Miranda, Rough traces of BV functions in metric measure spaces, ArXiv:1907.01673v4.Search in Google Scholar

[5] A. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math., Vol. IV, American Mathematical Society, Providence, R.I., 1961, pp. 33-49.10.1090/pspum/004/0143037Search in Google Scholar

[6] K. Falconer, Techniques in fractal geometry, Wiley, Chichester 1997.10.2307/2533585Search in Google Scholar

[7] E. Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, 80. Birkhäuser Verlag, Basel, 1984. xii+240 pp.10.1007/978-1-4684-9486-0Search in Google Scholar

[8] P. Hajłasz, Sobolev spaces on metric-measure spaces. Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 173-218, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003.10.1090/conm/338/06074Search in Google Scholar

[9] J. Heinonen, P. Koskela, Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181 (1998), no. 1, 1-61.Search in Google Scholar

[10] J. Heinonen, P. Koskela, N. Shanmugalingam, and J. Tyson: Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients, Cambridge: Cambridge University Press, 2015.10.1017/CBO9781316135914Search in Google Scholar

[11] I. Holopainen, Volume growth, Green’s functions, and parabolicity of ends. Duke Math. J. 97 (1999), no. 2, 319-346.Search in Google Scholar

[12] I. Holopainen, P. Koskela, Volume growth and parabolicity. Proc. Amer. Math. Soc. 129 (2001), no. 11, 3425-3435.Search in Google Scholar

[13] I. Holopainen, S. Markvorsen, V. Palmer, p-capacity and p-hyperbolicity of submanifolds. Rev. Mat. Iberoam. 25 (2009), no. 2, 709-738.Search in Google Scholar

[14] P. Koskela, K. Nguyen, and Z. Wang, Trace and density results on regular trees, arXiv:1911.00533.Search in Google Scholar

[15] P. Koskela, Z. Wang, Dyadic norm Besov-type spaces as trace spaces on regular trees. Potential Anal. 53 (2020), no. 4, 1317-1346.Search in Google Scholar

[16] P. Lahti, N. Shanmugalingam, Trace theorems for functions of bounded variation in metric spaces, J. Funct. Anal. 274 (2018), no. 10, 2754-2791.Search in Google Scholar

[17] L. Malý, Trace and extension theorems for Sobolev-type functions in metric spaces, arXiv:1704.06344.Search in Google Scholar

[18] L. Malý, N. Shanmugalingam, M. Snipes, Trace and extension theorems for functions of bounded variation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18 (2018), no. 1, 313-341.Search in Google Scholar

[19] V. Maz’ja, Sobolev spaces, Springer-Verlag, Berlin, 1985. xix+486 pp.10.1007/978-3-662-09922-3Search in Google Scholar

[20] V. Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, Springer, Heidelberg, 2011. xxviii+866 pp.Search in Google Scholar

[21] K. Nguyen, Classification criteria for regular trees, arXiv:2009.11761.Search in Google Scholar

[22] K. Nguyen, Z. Wang, Admissibility versus Ap-conditions on regular trees, Anal. Geom. Metr. Spaces 8 (2020), 92-105.10.1515/agms-2020-0110Search in Google Scholar

[23] N. Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16 (2000), no. 2, 243-279.Search in Google Scholar

[24] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.10.1515/9781400883882Search in Google Scholar

[25] Z. Wang, Characterization of trace spaces on regular trees via dyadic norms. J. Math. Anal. Appl. 494 (2021), no. 2, 124646.Search in Google Scholar

[26] W. Ziemer, Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989. xvi+308 pp.10.1007/978-1-4612-1015-3Search in Google Scholar

Received: 2020-09-07
Accepted: 2020-11-20
Published Online: 2020-12-31
Published in Print: 2020-01-01

© 2020 Pekka Koskela et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/agms-2020-0117/html
Scroll to top button