Skip to main content
Log in

Design of Catalytic Polyfunctional Nanomaterials for the Hydrogen Production Processes

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The processes of hydrogen production from various types of fossil and renewable fuels are energy-intensive multi-route chemical reactions, and for their efficient implementation it is necessary to use selective and high-performance catalysts that combine high activity, thermal conductivity, and corrosion and thermal resistance. A general strategy for the design of catalytic systems for hydrogen production is outlined; it consists in the use of composite catalysts of the “metal nanoparticles/active oxide nanoparticles/structural oxide component/structured metal support” type; an approach for their directed synthesis is described. The structured metal support provides efficient heat removal or supply for exo- or endothermic reactions, possesses good hydrodynamic characteristics, and facilitates scale transition. The structural oxide component (aluminum oxide) provides thermal and corrosion resistance and a high specific surface area of the catalytic coating, as well as performing a protective function for the metal support. The active oxide component (mainly cerium–zirconium oxides) increases resistance to carbonization due to oxygen mobility and maintains a high dispersion of the active component due to its strong metal–support interaction. Metal nanoparticles 1–2 nm in size are involved in the activation of substrate molecules. FeCrAl alloy wire meshes, formed into cylindrical blocks of specified sizes, to be used as a heat-conducting substrate. By controlled annealing with the formation of a micron α-Al2O3 layer and subsequent deposition of a η-Al2O3 layer according to the Bayer method (through aluminum hydroxide), a structural layer of η-Al2O3 with a “breathing” needle morphology was deposited onto the FeCrAl alloy surface; then the catalytic active component was deposited onto this layer by impregnation and/or deposition. The efficiency of the proposed strategy is shown for Rh/Ce0.75Zr0.25O2 – δ–η-Al2O3/FeCrAl catalysts for methane tri-reforming and Cu–CeO2 – δ/η-Al2O3/FeCrAl catalysts for dimethoxymethane steam reforming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Ren, N. M. Musyoka, H. W. Langmi, et al., Int. J. Hydrogen Energy 42, 289 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.195

    Article  CAS  Google Scholar 

  2. F. Zhang, P. Zhao, M. Niu, and J. Maddy, Int. J. Hydrogen Energy 41, 14535 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.293

    Article  CAS  Google Scholar 

  3. J. G. Speight, “Fuels for fuel cells,” in Fuel Cells: Technologies for Fuel Processing, Ed. by D. Shekhawat et al. (Elsevier, Amsterdam, 2011), Chap. 3, p. 29. https://doi.org/10.1016/B978-0-444-53563-4.10003-3

  4. C. Song, Catal. Today 77, 17 (2002). https://doi.org/10.1016/S0920-5861(02)00231-6

    Article  CAS  Google Scholar 

  5. J. R. Rostrup-Nielsen, T. Christensen, and I. Dybkjaer, Recent Adv. Basic Appl. Asp. Ind. Catal. 113, 81 (1998).

    CAS  Google Scholar 

  6. A. V. Porsin, V. N. Rogozhnikov, A. V. Kulikov, et al., Cryst. Growth Des. 17, 4730 (2017). https://doi.org/10.1021/acs.cgd.7b00660

    Article  CAS  Google Scholar 

  7. T. B. Shoynkhorova, P. A. Simonov, D. I. Potemkin, et al., Appl. Catal. B 237, 237 (2018). https://doi.org/10.1016/j.apcatb.2018.06.003.14

    Article  CAS  Google Scholar 

  8. H. Zhang, X. Li, F. Zhu, et al., Chem. Eng. J. 310, 114 (2017). https://doi.org/10.1016/j.cej.2016.10.104

    Article  CAS  Google Scholar 

  9. S. T. Wismann, J. S. Engb[oe]k, S. B. Vendelbo, et al., Science (Washington, DC, U. S.) 364, 756 (2019). https://doi.org/10.1126/science.aaw8775

  10. G. Pauletto, A. Vaccari, G. Groppi, et al., Chem. Rev. 120, 7516 (2020). https://doi.org/10.1021/acs.chemrev.0c00149

    Article  CAS  Google Scholar 

  11. T. B. Shoynkhorova, V. N. Rogozhnikov, N. V. Ruban, et al., Int. J. Hydrogen Energy 44, 9941 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.148

    Article  CAS  Google Scholar 

  12. W. Pan, Catal. Today 98, 463 (2004). https://doi.org/10.1016/j.cattod.2004.09.054

    Article  CAS  Google Scholar 

  13. V. A. Kirillov, A. B. Shigarov, N. A. Kuzin, et al., Catal. Ind. 12, 66 (2020). https://doi.org/10.1134/S2070050420010080

    Article  Google Scholar 

  14. A. Álvarez, A. Bansode, A. Urakawa, et al., Chem. Rev. 117, 9804 (2017). https://doi.org/10.1021/acs.chemrev.6b00816

    Article  CAS  Google Scholar 

  15. S. Schemme, J. L. Breuer, M. Koller, et al., Int. J. Hydrogen Energy 45, 5395 (2020). https://doi.org/10.1016/j.ijhydene.2019.05.028

    Article  CAS  Google Scholar 

  16. A. A. Pechenkin, S. D. Badmaev, V. D. Belyaev, and V. A. Sobyanin, Appl. Catal. B 166–167, 535 (2015). https://doi.org/10.1016/j.apcatb.2014.12.008

    Article  CAS  Google Scholar 

  17. R. Thattarathody, S. Katheria, and M. Sheintuch, Ind. Eng. Chem. Res. 58, 21382 (2019). https://doi.org/10.1021/acs.iecr.9b04483

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Foundation for Basic Research in the framework of project no. 19-33-60008 (D.I. Potemkin) for the study of the tri-reforming of methane.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Potemkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potemkin, D.I., Snytnikov, P.V., Badmaev, S.D. et al. Design of Catalytic Polyfunctional Nanomaterials for the Hydrogen Production Processes. Nanotechnol Russia 15, 308–313 (2020). https://doi.org/10.1134/S1995078020030106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020030106

Navigation