Skip to main content
Log in

Fabrication and Study of the Electronic Structure of МоO3/Мо Nanofilms

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The composition, the surface morphology, and the crystalline and electronic structure of МоО3 nanofilms are studied using a set of methods, namely, scanning electron spectroscopy and high energy electron diffraction, photoelectron spectroscopy, and secondary electron emission. These nanofilms are obtained by implanting \({\text{O}}_{{\text{2}}}^{{\text{ + }}}\) ions into a Mo single crystal heated to Т = 850 K. Films with different thicknesses (~30, 60, and 90 Å) are obtained at an ion energy of 1–5 keV and a dose of D = (4–8) × 1017 cm–2. It is shown that a continuous and homogeneous polycrystalline МоО3 film with a surface roughness of at most 1.5 nm is formed. The band gaps of these films are ~3.4 eV, and the widths of the conduction bands are 4.5 eV. It is discovered that there are four maxima of the density of electronic states in the valence band; probably, they are due to hybridization of the N5, N45, N4 energy levels of Mo with the L2, L23, and L3 energy levels of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. V. Korshunov, Size and Structure Effects in Metal Oxidation Processes: A Monograph (Tomsk, 2013) [in Russian].

    Google Scholar 

  2. A. A. Minnekhanov, E. V. Vakhrina, E. A. Konstantinova, and P. K. Kashkarov, JETP Lett. 107, 264 (2018).

    Article  CAS  Google Scholar 

  3. E. P. Surovoi, V. E. Surovaia, and L. N. Bugerko, J. Phys. Chem. A 87 (5), 826 (2013).

    CAS  Google Scholar 

  4. V. S. Kovivchak and T. V. Panova, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 10, 1226 (2016).

    Article  CAS  Google Scholar 

  5. S. A. Gavrilov and A. N. Belov, Electrochemical Processes in Micro- and Nanoelectronics Technology (Vysshee obrazovanie, Moscow, 2009) [in Russian].

  6. D. B. Bunazarov, A. Kh. Kasymov, M. T. Normuradov, and T. S. Pugacheva, Radiotekh. Elektron., No. 7, 21 (1976).

  7. E. P. Surovoi, L. N. Bugerko, and V. E. Surovaya, Russ. J. Phys. Chem. A 87, 826 (2013).

    Article  CAS  Google Scholar 

  8. K. V. R. Chary, K. R. Reddy, K. Gurram, et al., J. Catal. 226 (2), 283 (2004).

    Article  CAS  Google Scholar 

  9. D. O. Scanlon, G. W. Watson, D. J. Payne, et al., J. Phys. Chem. C 114, 4636 (2010). https://doi.org/10.1021/jp9093172

    Article  CAS  Google Scholar 

  10. M. Kang, E. Oh, I. Kim, et al., Curr. Appl. Phys. 12, 489 (2012). https://doi.org/10.1016/j.cap.2011.08.007

    Article  Google Scholar 

  11. N. Y. Bohne, F. Shevchenko, and J. Prokert, Nucl. Instrum. Methods Phys. Res., Sect. B 24 (1–2), 157 (2005).

    Google Scholar 

  12. B. Renner, C. Hammerl, and B. Rauschenbach, Nucl. Instrum. Methods Phys. Res., Sect. B 160 (3), 363 (2000).

    CAS  Google Scholar 

  13. N. V. Alov, Nucl. Instrum. Methods Phys. Res., Sect. B 256 (1), 337 (2007).

    CAS  Google Scholar 

  14. K. Ivna, J. Piltaverlavana, and R. Badovinac, Appl. Surf. Sci. 425, 416 (2017).

    Article  Google Scholar 

  15. N. V. Alov and M. P. Leonov, Fiz. Khim. Obrab. Mater. 6 (6), 94 (1986).

    Google Scholar 

  16. B. E. Umirzakov, D. A. Tashmukhamedova, S. T. Gulyamova, and G. Kh. Allayarova, Tech. Phys. 65, 795 (2020).

    Article  CAS  Google Scholar 

  17. Z. A. Isakhanov, Z. E. Mukhtarov, B. E. Umirzakov, and M. K. Ruzibaeva, Tech. Phys. 56 (4), 546 (2011).

    Article  CAS  Google Scholar 

  18. S. B. Donaev, F. Djurabekova, D. A. Tashmukhamedova, and B. E. Umirzakov, Phys. Status Solidi C 12 (1–2), 89 (2015).

    Article  CAS  Google Scholar 

  19. Y. S. Ergashov, D. A. Tashmukhamedova, and E. Rabbimov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 9, 350 (2015).

    Article  CAS  Google Scholar 

  20. A. A. Aliev and Z. T. Shalimov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 8, 105 (2003).

  21. B. E. Umirzakov, D. A. Tashmukhamedova, D. M. Muradkabilov, and K. K. Boltaev, Tech. Phys. 58 (6), 841 (2013).

  22. V. K. Adamchuk and S. I. Fedosenko, Izv. Akad. Nauk SSSR, Ser. Fiz. 43 (3), 523 (1979).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to D.A. Tashmukhamedova and B.E. Umirzakov for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kh. Allayarova.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allayarova, G.K. Fabrication and Study of the Electronic Structure of МоO3/Мо Nanofilms. J. Surf. Investig. 14, 1179–1182 (2020). https://doi.org/10.1134/S1027451020060026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020060026

Keywords

Navigation