Skip to main content
Log in

Studying the Interaction of LaNi5 Intermetallic Alloy with Oxygen by SIMS

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract—

This article presents the chemical composition of surface monolayers of LaNi5 intermetallic alloy during interaction with oxygen determined by secondary-ion mass spectrometry. It is demonstrated that at higher partial pressures of oxygen the measured mass spectra contain a large set of emissions, and positive and negative secondary ions containing both components of the alloy and oxygen. This evidences that oxygen, incident on the surface, forms firm bonds with lanthanum and nickel. Existence of lanthanum-nickel cluster secondary ions containing oxygen in the spectra makes it possible to believe that as a consequence of oxygen impact a complex chemical structure is formed on the surface and near the surface. The structure contains oxygen and both lanthanum and nickel. With an increase in the partial pressure of oxygen the ratio of the number of oxygen atoms to the number of metal atoms in such lanthanum-nickel-oxide structure increases. Judging by the diversity of the composition of the observed secondary ions, such an oxide structure is not homogeneous but is a superposition of oxide structures with various stoichiometric ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. P. Broom, Hydrogen Storage Materials: The Characterisation of Their Storage Properties (Springer, London, 2011). https://doi.org/10.1007/978-0-85729-221-6

    Book  Google Scholar 

  2. G. D. Sandrock and P. D. Goodell, J. Less-Common Met. 73, 161 (1980). https://doi.org/10.1016/0022-5088(80)90355-0

    Article  CAS  Google Scholar 

  3. G. D. Sandrock and P. D. Goodell, J. Less-Common Met. 104, 159 (1984). https://doi.org/10.1016/0022-5088(84)90452-1

    Article  CAS  Google Scholar 

  4. L. Schlapbach, A. Seiler, F. Stucki, and H. C. Siegmann, J. Less-Common Met. 73, 145 (1980). https://doi.org/10.1016/0022-5088(80)90354-9

    Article  CAS  Google Scholar 

  5. P. Selvam, B. Viswanathan, C. S. Swamy, and V. Srinivasan, J. Less-Common Met. 163, 89 (1990). https://doi.org/10.1016/0022-5088(90)90088-2

    Article  CAS  Google Scholar 

  6. P. D. Goodell, J. Less-Common Met. 89 (1), 45 (1983). https://doi.org/10.1016/0022-5088(83)90247-3

    Article  CAS  Google Scholar 

  7. H. C. Siegmann, L. Schlapbach, and C. R. Brundle, Phys. Rev. Lett. 40 (14), 972 (1978). https://doi.org/10.1103/PhysRevLett.40.972

    Article  CAS  Google Scholar 

  8. L. Schlapbach, A. Seiler, H. C. Siegmann, T. V. Waldkirch, P. Zucher, and C. R. Brundle, Int. J. Hydrogen Energy 4 (1), 21 (1979). https://doi.org/10.1016/0360-3199(79)90126-5

    Article  CAS  Google Scholar 

  9. F. Stucki and L. Schlapbach, J. Less-Common Met. 74 (1), 143 (1980). https://doi.org/10.1016/0022-5088(80)90084-3

    Article  CAS  Google Scholar 

  10. L. Schlapbach, F. Stucki, A. Seiler, and H. C. Siegmann, Surf. Sci. 106 (1-3), 157 (1981). https://doi.org/10.1016/0039-6028(81)90194-1

    Article  CAS  Google Scholar 

  11. Th. von Waldkirch and P. Zurcher, Appl. Phys. Lett. 33, 689 (1978). https://doi.org/10.1063/1.90531

    Article  CAS  Google Scholar 

  12. L. Schlapbach, Solid State Commun. 38 (2), 117 (1981). https://doi.org/10.1016/0038-1098(81)90802-4

    Article  CAS  Google Scholar 

  13. W. E. Wallace, R. F. Karlicek, and H. Imamura, J. Phys. Chem. 83 (13), 1708 (1979). https://doi.org/10.1021/j100476a006

    Article  CAS  Google Scholar 

  14. J. H. Weaver, A. Franciosi, W. E. Wallace, and H. Kevin Smith, J. Appl. Phys 51, 5847 (1980). https://doi.org/10.1063/1.327544

    Article  CAS  Google Scholar 

  15. J. H. Weaver, A. Franciosi, D. J. Peterman, T. Takeshita, and K. A. Gschneidner, Jr., J. Less-Common Met. 86, 195 (1982). https://doi.org/10.1016/0022-5088(82)90205-3

    Article  CAS  Google Scholar 

  16. P. Selvam, B. Viswanathan, and V. Srinivasan, Int. J. Hydrogen Energy 14 (9), 687 (1989). https://doi.org/10.1016/0360-3199(89)90048-7

    Article  CAS  Google Scholar 

  17. P. Selvam, B. Viswanathan, C. S. Swamy, and V. Srinivasan, Int. J. Hydrogen Energy 16 (1), 23 (1991). https://doi.org/10.1016/0360-3I99(9I)90057-P

    Article  CAS  Google Scholar 

  18. Ya. M. Fogel, Int. J. Mass Spectrom. Ion Phys. 9 (2), 109 (1972). https://doi.org/10.1016/0020-7381(72)80037-8

    Article  CAS  Google Scholar 

  19. V. A. Litvinov, A. G. Koval’, and B. M. Fizgeer, Izv. Akad. Nauk SSSR, Ser. Fiz. 55 (12), 2423 (1991).

    CAS  Google Scholar 

  20. H. Züchner, R. Dobrileit, and T. Rauf, Fresenius’ J Anal Chem 341, 219 (1991).

    Article  Google Scholar 

  21. H. Züchner, P. Kock, T. Bruning, T. Rauf, et al., J. Less-Common Met. 172–174 Part A, 95 (1991). https://doi.org/10.1016/0022-5088(91)90437-9

  22. V. A. Litvinov, I. I. Okseniuk, D. I. Shevchenko, and V. V. Bobkov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12 (3), 576 (2018). https://doi.org/10.1134/S1027451018030321

    Article  CAS  Google Scholar 

  23. Topics in Applied Physics, Vol. 47: Sputtering by Particle Bombardment I. Physical Sputtering of Single-Element Solids, Ed. by R. Behrisch (Springer, Berlin, 1981).

    Google Scholar 

  24. S. P. Holland, B. J. Garrison, and N. Winograd, Phys. Rev. Lett. 44, 756 (1980).

    Article  CAS  Google Scholar 

  25. P. Joyes, J. Phys. (Paris) 44, 221 (1983). https://doi.org/10.1051/jphys:01983004402022100

    Article  CAS  Google Scholar 

  26. N. Winograd, B. J. Garrison, T. Fleisch, W. N. Delgass, and D. E. Harrison, Jr., J. Vac. Sci. Technol. 16, 629 (1979). https://doi.org/10.1116/1.570017

    Article  CAS  Google Scholar 

  27. B. J. Garrison, N. Winograd, and D. E. Harrison, Jr., J. Chem. Phys. 69, 1440 (1978). https://doi.org/10.1063/1.436767

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Litvinov.

Additional information

Translated by I. Moshkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvinov, V.A., Okseniuk, I.I., Shevchenko, D.I. et al. Studying the Interaction of LaNi5 Intermetallic Alloy with Oxygen by SIMS. J. Surf. Investig. 14, 1358–1365 (2020). https://doi.org/10.1134/S102745102006035X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102006035X

Keywords

Navigation