Skip to main content
Log in

Photoluminescence of CdSe and CdSe/ZnS Quantum Dots in Amorphous and Liquid-Crystalline Polymer Matrices

  • COMPOSITES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The influence of the structure of the polymer matrix on the main photoluminescence characteristics of composites based on core (CdSe) and core–shell type (CdSe/ZnS) quantum dots embedded in liquid-crystalline and amorphous polymers of similar chemical structure is studied. The photoluminescence spectra consist of two bands (2.15 and 1.70 eV), the first of which corresponds to the radiative recombination of excitons, and the second one corresponds to carriers captured by traps at the quantum dot boundary. The second band is absent in the case of CdSe/ZnS quantum dots embedded in the liquid-crystalline polymer matrix. The kinetics of photoluminescence is well described by the sum of two decaying exponentials for CdSe quantum dots in matrices of both types and CdSe/ZnS quantum dots in the amorphous matrix. To determine the photoluminescence kinetics in the case of CdSe/ZnS quantum dots in the liquid-crystalline matrix, one exponential is sufficient. These effects are explained by the appearance of regions with closely spaced quantum dots, in which, in particular, the resonance transmission of excitation is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. D. Bimberg, Semiconductor Nanostructures (Springer, Berlin, 2008).

    Book  Google Scholar 

  2. M. Green, Semiconductor Quantum Dots: Organometallic and Inorganic Synthesis (RSC, Cambridge, 2014).

    Google Scholar 

  3. V. Ustinov, A. Zhukov, A. Egorov, and N. Maleev, Quantum Dot Lasers (Oxford Univ. Press, Oxford, 2003).

    Book  Google Scholar 

  4. A. P. Litvin, I. V. Martynenko, F. Purcell-Milton, A. V. Baranov, A. V. Fedorov, and Y. K. Gun’ko, J. Mater. Chem. A 5, 13252 (2017).

    Article  CAS  Google Scholar 

  5. J. M. Pietryga, Y.-S. Park, J. Lim, A. F. Fidler, W. K. Bae, S. Brovelli, and V. I. Klimov, Chem. Rev. 116, 10513 (2016).

    Article  CAS  Google Scholar 

  6. P. Geiregat, D. Van Thourhout, and Z. Hens, NPG Asia Mater. 11, 2 (2019).

    Article  Google Scholar 

  7. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, Science 290 (5490), 314 (2000).

    Article  CAS  Google Scholar 

  8. B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun, and H. V. Demiret, Adv. Mater. 27, 2741 (2015).

    Article  CAS  Google Scholar 

  9. N. Tomczak, D. Jańczewski, M. Han, and G. J. Vancso, Prog. Polym. Sci. 34, 393 (2009).

    Article  CAS  Google Scholar 

  10. L. Pang, Y. Shen, K. Tetz, and Y. Fainman, Opt. Express 13, 44 (2005).

    Article  CAS  Google Scholar 

  11. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).

    Article  CAS  Google Scholar 

  12. J. Mirzaei, M. Reznikov, and T. Hegmann, J. Mater. Chem. 22, 22350 (2012).

    Article  CAS  Google Scholar 

  13. A. L. Rodarte, F. Cisneros, J. E. Hein, S. Ghosh, and L. S. Hirst, Photonics 2, 855 (2015).

    Article  CAS  Google Scholar 

  14. M. A. Kurochkina, E. A. Konshina, and D. P. Shcherbinin, Opt. Spectrosc. 121, 585 (2016).

    Article  CAS  Google Scholar 

  15. G. A. Shandryuk, A. V. Rebrov, R. B. Vasiliev, S. G. Dorofeev, A. S. Merekalov, A. M. Gas’kov, and R. V. Talroze, Polym. Sci., Ser. B 47, 266 (2005).

    Google Scholar 

  16. G. A. Shandryuk, E. V. Matukhina, R. B. Vasil’ev, A. V. Rebrov, G. N. Bondarenko, A. S. Merekalov, A. M. Gas’kov, and R. V. Talroze, Macromolecules 41, 2178 (2008).

    Article  CAS  Google Scholar 

  17. G. I. Tselikov, G. A. Shandryuk, I. Yu. Kutergina, A. M. Shatalova, A. S. Merekalov, V. Yu. Timoshenko, and R. V. Talroze, Polym. Sci., Ser. A 56, 781 (2014).

    Article  CAS  Google Scholar 

  18. A. M. Shatalova, I. Yu. Kutergina, Ya. I. Derikov, G. A. Shandryuk, and R. V. Talroze, Polym. Sci., Ser. B 54, 533 (2012).

    Article  CAS  Google Scholar 

  19. G. I. Tselikov, V. Yu. Timoshenko, L. A. Golovan, J. Plenge, A. M. Shatalova, G. A. Shandryuk, I. Yu. Kutergina, A. S. Merekalov, E. Rühl, and R. V. Talroze, ChemPhysChem 16, 1071 (2015).

    Article  CAS  Google Scholar 

  20. A. V. Elopov, V. B. Zaytsev, D. M. Zhigunov, G. A. Shandryuk, A. A. Ezhov, A. S. Merekalov, and L. A. Golovan, Bull. Russ. Acad. Sci.: Phys. 83, 32 (2019).

    Article  CAS  Google Scholar 

  21. I. Yu. Kutergina, Candidate’s Dissertation in Chemistry (RKhTU im. D.I. Mendeleeva, Moscow, 2013).

  22. R. B. Vasiliev, S. G. Dorofeev, D. N. Dirin, D. A. Belov, and T. A. Kuznetsova, Mendeleev Commun. 14, 169 (2004).

    Article  Google Scholar 

  23. W. K. Bae, K. Char, H. Hur, and S. Lee, Chem. Mater. 20, 531 (2008).

    Article  CAS  Google Scholar 

  24. J. J. Lambe, C. C. Klick, and D. L. Dexter, Phys. Rev. 103, 1715 (1956).

    Article  CAS  Google Scholar 

  25. D. R. Baker and P. V. Kamat, Langmuir 26, 11272 (2010).

    Article  CAS  Google Scholar 

  26. R. B. Vasiliev, A. I. Lebedev, E. P. Lazareva, N. N. Shlenskaya, V. B. Zaytsev, A. G. Vitukhnovsky, Y. Yuanzhao, and S. Kazuaki, Phys. Rev. 95, 165414.

  27. B. M. Saidzhonov, V. F. Kozlovsky, V. B. Zaytsev, and R. B. Vasiliev, J. Lumin. 209, 170 (2019).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to S.S. Abramchuk for his help in TEM measurements on equipment of the Transmission Electron Microscopy Shared Research Center of Moscow State University, S.G. Dorofeev and P.K. Kashkarov for extremely helpful discussions, and M.N. Martyshov, D.V. Orlov, and N.E. Presnov for their help in experiments.

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 18-02-00548), and QDs and polymer matrices were synthesized as a part of the state task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Merekalov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovan, L.A., Elopov, A.V., Zaitsev, V.B. et al. Photoluminescence of CdSe and CdSe/ZnS Quantum Dots in Amorphous and Liquid-Crystalline Polymer Matrices. Polym. Sci. Ser. A 62, 701–713 (2020). https://doi.org/10.1134/S0965545X20060048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X20060048

Navigation