Skip to main content
Log in

Polycaprolactone–Gelatin Membranes in Controlled Drug Delivery of 5-Fluorouracil

  • MEDICINE POLYMERS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Nanofibers are known as promising carriers for anticancer drug delivery, particularly in postoperative local chemotherapy, through surgical grafting the membrane. In this study, blends of poly (ε‑caprolactone) (PCL) and gelatin (Ge) at various polymeric proportions were used for electrospinning of the nanofibers containing the anticancer drug of 5-Fluorouracil (5-FU). The electrospinning was performed at three different conditions to study the influence of processing parameters on the membrane properties. The morphology and tensile properties of the PCL-Ge nanofibers were reliant on the gelatin ratio and the processing condition. Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) outcomes demonstrated that 5-Fluorouracil (5-FU) was well distributed in the fiber matrix, forming H-bonds and in an amorphous state. Weight loss measurements and drug release study showed much faster degradation, and 5-FU releasing from the nanofibers contained a higher amount of gelatin. Studying the cytotoxicity of the 5-FU-loaded nanofibers showed that the P70G30FU had well restrained the survive, attachment, and proliferation of HT-29 colorectal cancer cells. Therefore, the 5-FU loaded PCL-Ge nanofibers have the ability of controlled drug release following the desired cancer treatment protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. L. Siegel, K. D. Miller, and A. Jemal, Ca-Cancer J. Clin. 65, 5 (2015).

    PubMed  Google Scholar 

  2. L. Bromberg and V. Alakhov, J. Controlled Release 88, 11 (2003).

    CAS  Google Scholar 

  3. M. Pulkkinen, J. Pikkarainen, T. Wirth, T. Tarvainen, V. Haapa-aho, H. Korhonen, J. Seppälä, and K. Järvinen, Eur. J. Pharm. Biopharm. 70, 66 (2008).

    CAS  PubMed  Google Scholar 

  4. J. Fischer, C. R. Ganellin, A. Ganesan, and J. Proudfoot, in Analogue-Based Drug Discovery, Ed. by J. Fischer and C. R. Ganellin (Wiley-VCH, Weinheim, 2010), pp. 29‒58.

    Google Scholar 

  5. D. B. Longley, D. P. Harkin, and P. G. Johnston, Nat. Rev. Cancer 3, 330 (2003).

    CAS  Google Scholar 

  6. S. Rossi, Australian Medicines Handbook 2013 (Australian Medicines Handbook Pty Ltd., Adelaide, 2013).

    Google Scholar 

  7. S. A. Thomas, Z. Grami, S. Mehta, and K. Patel, Cancer Cell Microenviron. 3, e1266 (2016).

    Google Scholar 

  8. L. Brannon-Peppas and J. Blanchette, Adv. Drug Delivery Rev. 64, 206 (2012).

    Google Scholar 

  9. N. R. Panyala, E. M. Peña-Méndez, and J. Havel, J. Appl. Biomed. 7, 75 (2009).

    CAS  Google Scholar 

  10. W. Qiao, B. Wang, Y. Wang, L. Yang, Y. Zhang, and P. Shao, J. Nanomater. 2010, 7 (2010).

    Google Scholar 

  11. M. Wang, A. Hsieh, and G. Rutledge, Polymer 46, 3407 (2005).

    CAS  Google Scholar 

  12. W. Cui, X. Li, S. Zhou, and J. Weng, J. Appl. Polym. Sci. 103, 3105 (2007).

    CAS  Google Scholar 

  13. H. S. Yoo, T. G. Kim, and T. G. Park, Adv. Drug Delivery Rev. 61, 1033 (2009).

    CAS  Google Scholar 

  14. B. Zou, Y. Liu, X. Luo, F. Chen, X. Guo, and X. Li, Acta Biomater. 8, 1576 (2012).

    CAS  PubMed  Google Scholar 

  15. S. Mohammadi, S. Ramakrishna, S. Laurent, M. A. Shokrgozar, D. Semnani, D. Sadeghi, S. Bonakdar, and M. Akbari, J. Biomed. Mater. Res., Part A 107, 403 (2019).

    CAS  Google Scholar 

  16. D. Semnani, E. Naghashzargar, M. Hadjianfar, F. Dehghan Manshadi, S. Mohammadi, S. Karbasi, and F. Effaty, Int. J. Polym. Mater. Polym. Biomater. 66, 149 (2017).

    CAS  Google Scholar 

  17. D.-G. Yu, L.-M. Zhu, K. White, and C. Branford-White, Health 1, 67 (2009).

    Google Scholar 

  18. V. Y. Chakrapani, A. Gnanamani, V. Giridev, M. Madhusoothanan, and G. Sekaran, J. Appl. Polym. Sci. 125, 3221 (2012).

    CAS  Google Scholar 

  19. Z. Li and C. Wang, Effects of Working Parameters on Electrospinning, in One-Dimensional Nanostructures, (Springer, Berlin; Heidelberg, 2013), pp. 15‒28.

    Google Scholar 

  20. P. Kumar, Bachelor’s Thesis (Department of Biotechnology and Medical Engineering National Institute of Technology, Rourkela, 2012).

  21. J. Zeng, L. Yang, Q. Liang, X. Zhang, H. Guan, X. Xu, X. Chen, and X. Jing, J. Controlled Release 105, 43 (2005).

    CAS  Google Scholar 

  22. G. Ma, Y. Liu, C. Peng, D. Fang, B. He, and J. Nie, Carbohydr. Polym. 86, 505 (2011).

    CAS  Google Scholar 

  23. T. K. Dash and V. B. Konkimalla, J. Controlled Release 158, 15 (2012).

    CAS  Google Scholar 

  24. B. Feng, H. Tu, H. Yuan, H. Peng, and Y. Zhang, Biomacromolecules 13, 3917 (2012).

    CAS  PubMed  Google Scholar 

  25. J. C. Reichert, A. Cipitria, D. R. Epari, S. Saifzadeh, P. Krishnakanth, A. Berner, M. A. Woodruff, H. Schell, M. Mehta, and M. A.Schuetz, Sci. Transl. Med. 4(141), 141ra93 (2012).

    PubMed  Google Scholar 

  26. Z. Ma, W. He, T. Yong, and S. Ramakrishna, Tissue Eng. 11, 1149 (2005).

    CAS  PubMed  Google Scholar 

  27. D. Kai, M. P. Prabhakaran, B. Stahl, M. Eblenkamp, E. Wintermantel, and S. Ramakrishna, Nanotechnology 23, 095705 (2012).

    PubMed  Google Scholar 

  28. N. Sahoo, R. K. Sahoo, N. Biswas, A. Guha, and K. Kuotsu, Int. J. Biol. Macromol. 81, 317 (2015).

    CAS  PubMed  Google Scholar 

  29. J. Xue, B. Feng, R. Zheng, Y. Lu, G. Zhou, W. Liu, Y. Cao, Y. Zhang, and W. J. Zhang, Biomaterials 34, 2624 (2013).

    CAS  PubMed  Google Scholar 

  30. R. Zheng, H. Duan, J. Xue, Y. Liu, B. Feng, S. Zhao, Y. Zhu, Y. Liu, A. He, and W. Zhang, Biomaterials 35, 152 (2014).

    PubMed  Google Scholar 

  31. Y. Zhang, H. Ouyang, C. T. Lim, S. Ramakrishna, and Z.-M. Huang, J. Biomed. Mater. Res., Part B 72B, 156 (2005).

    CAS  Google Scholar 

  32. J. Xue, M. He, H. Liu, Y. Niu, A. Crawford, P. D. Coates, D. Chen, R. Shi, and L. Zhang, Biomaterials 35(34), 9395 (2014).

    CAS  PubMed  Google Scholar 

  33. A. O. Basar, S. Castro, S. Torres-Giner, J. M. Lagaron, and H. Turkoglu Sasmazel, Mater. Sci. Eng., C 81, 459 (2017).

    CAS  Google Scholar 

  34. A. Khalf and S. V. Madihally, Mater. Sci. Eng., C 76, 161 (2017).

    CAS  Google Scholar 

  35. H. R. Munj, J. J. Lannutti, and D. L. Tomasko, J. Biomater. Appl. 31, 933 (2017).

    CAS  PubMed  Google Scholar 

  36. P. Denis, J. Dulnik, and P. Sajkiewicz, Int. J. Polym. Mater. Polym. Biomater. 64, 354 (2015).

    CAS  Google Scholar 

  37. J. Dulnik, D. Kołbuk, P. Denis, and P. Sajkiewicz, Eur. Polym. J. 104, 147 (2018).

    CAS  Google Scholar 

  38. N. Peppas, Pharm. Acta Helv. 60, 110 (1985).

    CAS  PubMed  Google Scholar 

  39. P. L. Ritger and N. A. Peppas, J. Controlled Release 5, 37 (1987).

    CAS  Google Scholar 

  40. V. Ramesh Babu, K. Krishna Rao, M. Sairam, B. V. K. Naidu, K. M. Hosamani, and T. M. Aminabhavi, J. Appl. Polym. Sci. 99, 2671 (2006).

    Google Scholar 

  41. P. Costa and J. M. S. Lobo, Eur. J. Pharm. Sci. 13, 123 (2001).

    CAS  PubMed  Google Scholar 

  42. A. Raval, J. Parikh, and C. Engineer, Braz. J. Chem. Eng. 27, 211 (2010).

    CAS  Google Scholar 

  43. S. Khalili, S. N. Khorasani, N. Saadatkish, and K. Khoshakhlagh, Polym. Sci., Ser. A 58, 399(2016).

    CAS  Google Scholar 

  44. L. H. Chong, M. M. Lim, and N. Sultana, J. Nanomater. 2015, 15 (2015).

    Google Scholar 

  45. D. Kołbuk, P. Sajkiewicz, K. Maniura-Weber, and G. Fortunato, Eur. Polym. J. 49, 2052 (2013).

    Google Scholar 

  46. Z.-M. Huang, Y. Zhang, S. Ramakrishna, and C. Lim, Polymer 45, 5361 (2004).

    CAS  Google Scholar 

  47. M. S. Mirbagheri, D. Mohebbi-Kalhori, and N. Jirofti, Int. J. Basic Sci. Med. 2, 58 (2017).

    Google Scholar 

  48. S. Gautam, A. K. Dinda, and N. C. Mishra, Mater. Sci. Eng., C 33, 1228 (2013).

    CAS  Google Scholar 

  49. L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M.-H. Nasr-Esfahani, and S. Ramakrishna, Biomaterials 29, 4532 (2008).

    CAS  PubMed  Google Scholar 

  50. M. Hadjianfar, D. Semnani, and J. Varshosaz, Polym. Adv. Technol. 29, 2972 (2018).

    CAS  Google Scholar 

  51. M. Olukman, O. Şanlı, and E. K. Solak, J. Biomater. Nanobiotechnol. 3, 469 (2012).

    Google Scholar 

  52. J. Varshosaz, A. Jajanian-Najafabadi, A. Soleymani, and A. Khajavinia, Polym. Test. 65, 217 (2018).

    CAS  Google Scholar 

  53. E. Kaviannasab, D. Semnani, S. N. Khorasani, J. Varshosaz, S. Khalili, and F. Ghahreman, Mater. Res. Express 6, 115015 (2019).

    CAS  Google Scholar 

  54. S. U. Kumar, I. Matai, P. Dubey, B. Bhushan, A. Sachdev, and P. Gopinath, RSC Adv. 4, 38263 (2014).

  55. J. Zeng, A. Aigner, F. Czubayko, T. Kissel, J. H. Wendorff, and A. Biomacromolecules 6, 1484 (2005).

  56. E. Luong-Van, L. Grøndahl, K. N. Chua, K. W. Leong, V.Nurcombe, and S. M. Cool, Biomaterials 27, 2042 (2006).

    CAS  PubMed  Google Scholar 

  57. E.-R. Kenawy, F. I. Abdel-Hay, M. H. El-Newehy, and G. E. Wnek, “Processing of Polymer Nanofibers through Electrospinning as Drug Delivery Systems,” in Nanomaterials: Risks and Benefits, Ed. by I. Linkov and J. A. Steevens (Springer, Amsterdam, 2009), pp. 247‒263.

    Google Scholar 

  58. S. B. Lee, H. W. Jeon, Y. W. Lee, Y. M. Lee, K. W. Song, M. H. Park, Y. S. Nam, and H. C. Ahn, Biomaterials 24, 2503 (2003).

    CAS  PubMed  Google Scholar 

  59. S. Khalili, S. N. Khorasani, S. M. Razavi, B. Hashemibeni, and A. Tamayol, Appl. Biochem. Biotechnol. 187, 1193 (2018).

    PubMed  Google Scholar 

  60. J. Dulnik, P. Denis, P. Sajkiewicz, D. Kołbuk, and E. Choińska, Polym. Degrad. Stab. 130, 10 (2016).

    CAS  Google Scholar 

  61. S. Khalili, S. Nouri Khorasani, M. Razavi, B. Hashemi Beni, F. Heydari, and A. Tamayol, J. Biomed. Mater. Res., Part A 106, 370 (2018).

    CAS  Google Scholar 

  62. M. Wei, B. Kang, C. Sung, and J. Mead, Macromol. Mater. Eng. 291, 1307 (2006).

    CAS  Google Scholar 

  63. J. Hou, C. Li, L. Cheng, S. Guo, Y. Zhang, and T. Tang, Drug Dev. Ind. Pharm. 37, 1068 (2011).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Semnani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faezeh Ghahreman, Semnani, D., Khorasani, S.N. et al. Polycaprolactone–Gelatin Membranes in Controlled Drug Delivery of 5-Fluorouracil. Polym. Sci. Ser. A 62, 636–647 (2020). https://doi.org/10.1134/S0965545X20330020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X20330020

Navigation