Skip to main content
Log in

Chain Heterogeneity in Simulated Polymer Melts: NMR Free Induction Decay and Absorption Line

  • THEORY AND SIMULATION
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

This article has been updated

Abstract

Retrieving information about the molecular motion of polymer chain in melt from the FID is based on the theoretical assumptions in which the heterogeneity of segmental dynamics and its anisotropy along chain are ignored. This article—the second and conclusive in the series—demonstrates, in detail, the FID calculation for various length chains considering these peculiarities revealed in the previous article. The experimentally observed FID components are assigned to the corresponding fragments of the entangled chain, and reasons for the deviation from theoretical values defined by the chain structure are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Change history

  • 02 March 2021

    Section SUPPLEMENTARY INFORMATION was added to the article.

REFERENCES

  1. E. M. Pestryaev, Polym. Sci., Ser. A. 62, 766 (2020).

    CAS  Google Scholar 

  2. V. D. Fedotov, V. M. Chernov, and T. N. Khazanovich, Polym. Sci. U.S.S.R. 20, 1037 (1978).

    Google Scholar 

  3. J. P. Cohen-Addad, J. Chem. Phys. 60, 2440 (1974).

    CAS  Google Scholar 

  4. T. P. Kulagina, P. S. Manikin, G. E. Karnauch, and L. P. Smirnov, Russ. J. Phys. Chem. B 5, 674 (2011).

    CAS  Google Scholar 

  5. T. P. Kulagina, V. A. Varakina, and A. N. Kuzina, Rus. J. Phys. Chem. B 8, 391 (2014).

    CAS  Google Scholar 

  6. K. V. Fenchenko, Polym. Sci., Ser. A 44, 1029 (2002).

    Google Scholar 

  7. K. V. Fenchenko, J. Non-Cryst. Solids 358, 474 (2012).

    CAS  Google Scholar 

  8. M. P. Nicholas, E. Eryilmaz, F. Ferrage, D. Cowburn, and R. Ghose, Prog. Nucl. Magn. Reson. Spectrosc. 57, 111 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. G. Pileio, Prog. Nucl. Magn. Reson. Spectrosc. 56, 217 (2010).

    CAS  PubMed  Google Scholar 

  10. A. D. Bain and B. Berno, Prog. Nucl. Magn. Reson. Spectroc. 59, 223 (2011).

    CAS  Google Scholar 

  11. Yu. Ya. Gotlib, M. I. Lifshits, V. A. Shevelev, I. S. Lishanskii and I. V. Balanina, Polym. Sci. U.S.S.R. 18, 2630 (1976).

    Google Scholar 

  12. E. M. Pestryaev, Polym. Sci., Ser. A 60, 522 (2018).

    Google Scholar 

  13. N. F. Fatkullin, T. Körber, and E. A. Rössler, Polymer 142, 310 (2018).

    CAS  Google Scholar 

  14. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1989).

    Google Scholar 

  15. Yu. Ya. Gotlib, A. A. Darinskii, and Yu. E. Svetlov, Physical Kinetics of Macromolecules (Khimiya, Leningrad, 1986) [in Russian].

    Google Scholar 

  16. A. Yu. Grosberg and A. R. Khokhlov, Statistical Mechanics of Macromolecules (AIP Press, New York, 1994).

    Google Scholar 

  17. D. E. Woessner, J. Chem. Phys. 36, 1 (1962).

    CAS  Google Scholar 

  18. K. Adachi and T. Kotaka, Macromolecules 18, 466 (1985).

    CAS  Google Scholar 

  19. K. Adachi, I. Nishi, S. Itoh, and T. Kotaka, Macromolecules 23, 2554 (1990).

    CAS  Google Scholar 

  20. H. Watanabe, M. Yamazaki, H. Yoshida, K. Adachi, and T. Kotaka, Macromolecules 24, 5365 (1991).

    CAS  Google Scholar 

  21. K. Adachi,T. Wada, T. Kawamoto, and T. Kotaka, Macromolecules 28, 3588 (1995).

    CAS  Google Scholar 

  22. M. Yamane, Y. Hirose, and K. Adachi, Macromolecules 38, 9210 (2005).

    CAS  Google Scholar 

  23. D. Panja and G. T. Barkema, J. Chem. Phys. 131, 154903 (2009).

    PubMed  Google Scholar 

  24. K. Saalwachter, Prog. Nucl. Magn. Reson. Spectrosc. 51, 1 (2007).

    Google Scholar 

  25. E. M. Pestryaev, Izv. Ufimsk. Nauch. Tsentra RAN, Phis. 4 (3), 32 (2014).

    Google Scholar 

  26. L. Wallach, J. Chem. Phys. 47, 5258 (1967).

    CAS  Google Scholar 

  27. L. Wittebort and L. Szabo, J. Chem. Phys. 69, 1722 (1978).

    CAS  Google Scholar 

  28. I. Bahar and I. Erman, Macromolecules 20, 1368 (1987).

    CAS  Google Scholar 

  29. G. D. Smith, D. Y. Yoon, W. Zhu, and M. D. Ediger, Macromolecules. 27, 5563 (1994).

    CAS  Google Scholar 

  30. G. D. Smith, D. Y. Yoon and C. G. Wade, D. O’Leary, and A. Chen, and R. L. Jaffe, J. Chem. Phys. 106, 3798 (1996).

    Google Scholar 

  31. J. P. Cohen-Addad, J. Phys. 43, 1509 (1982).

    CAS  Google Scholar 

  32. J. P. Cohen-Addad and R. Dupeyre, Polymer 24, 400 (1983).

    CAS  Google Scholar 

  33. J. P. Cohen-Addad, Polymer 24, 1128 (1983).

    CAS  Google Scholar 

  34. M. G. Brereton, Macromolecules 22, 3667 (1989).

    CAS  Google Scholar 

  35. M. G. Brereton, Macromolecules 23, 1119 (1990).

    CAS  Google Scholar 

  36. M. G. Brereton, J. Chem. Phys. 94, 2136 (1991).

    CAS  Google Scholar 

  37. P. M. Singer, D. Asthagiri, W. G. Chapman, and G. J. Hiraski, J. Magn. Reson. 277, 15 (2017).

    CAS  PubMed  Google Scholar 

  38. P. M. Singer, D. Asthagiri, Z. Chen, A. V. Parambathu, G. J. Hiraski, and W. G. Chapman, J. Chem. Phys. 148, 164507 (2018).

    CAS  PubMed  Google Scholar 

  39. S. Krushev, W. Paul, and G. D. Smith, Macromolecules 35, 4198 (2002).

    CAS  Google Scholar 

  40. R. Kimmich, G. Schnur, and M. Kopf, Prog. Nucl. Magn. Reson. Spectrosc. 20, 385 (1988).

    Google Scholar 

  41. P. G. Klein, M. E. Ries, Progr. Nucl. Magn. Reson. Spectrosc. 42, 31(2003).

    CAS  Google Scholar 

  42. D. W. McCall, D. C. Douglass, and E. W. Anderson, J. Polym. Sci. 59, 301 (1962).

    CAS  Google Scholar 

  43. R. Folland and A. Charlesby, Polymer 20, 207 (1979).

    CAS  Google Scholar 

  44. R. Kimmich and R. Bachus, Colloid Polym. Sci. 260, 911 (1982).

    CAS  Google Scholar 

  45. R. Kimmich, Polymer 25, 187 (1984).

    CAS  Google Scholar 

  46. M. G. Brereton, I. M. Ward, N. Boden, and P. Wright, Macromolecules 24, 2068 (1991).

    CAS  Google Scholar 

  47. T. Z. Sen, I. Bahar, B. Erman, F. Laupretre, and L. Monnerie, Macromolecules 32, 3017 (1999).

    CAS  Google Scholar 

  48. P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269 (1953).

    CAS  Google Scholar 

  49. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961).

    Google Scholar 

  50. C. P. Slichter, Principles of Magnetic Resonance (Springer, Berlin; New York, 1990).

    Google Scholar 

  51. E. M. Pestryaev, J. Phys.: Conf. Ser. 324, 012031 (2011).

    Google Scholar 

  52. E. M. Pestryaev, Polym. Sci., Ser. A 61, 392 (2019).

    CAS  Google Scholar 

  53. T. M. Connor, Trans. Faraday Soc. 60, 1574 (1964).

    CAS  Google Scholar 

  54. J. D. Schieber, J. Chem. Phys. 118, 5162 (2003).

    CAS  Google Scholar 

  55. R. J. A. Steenbakkers, C. Tzoumanekas, Y. Li, M. Kroger, and J. D. Schieber, New J. Phys. 16, 015027 (2014).

    Google Scholar 

  56. C. Tzoumanekas and D. N. Theodorou, Macromolecules 39, 4592 (2006).

    CAS  Google Scholar 

  57. T. Spyriouni, C. Tzoumanekas, D. N. Theodorou, F. Muller-Plate, and G. Milano, Macromolecules 40, 3876 (2007).

    CAS  Google Scholar 

  58. C. Baig, P. S. Stephanou, G. Tsolou, V. G. Mavrantsas, and V. G. Kroger, Macromolecules 43(19), 8239 (2010).

  59. M. Anagiannakis, C. Tzoumanekas, and D. N. Theodorou, Macromolecules 45, 9475 (2012).

    Google Scholar 

  60. M. E. Ries, M. G. Brereton, P. G. Klein, and P. Daunis, Polym. Gels Networks 5, 285 (1997).

    CAS  Google Scholar 

  61. R. Kimmich and N. Fatkullin, Adv. Polym. Sci. 170, 1 (2004).

    CAS  Google Scholar 

  62. C. H. Adams, M. G. Brereton, L. R. Hutching, P. G. Klein, T. C. B. McLeish, R. W. Richard, and M. E. Ries, Macromolecules 33, 7101 (2000).

    CAS  Google Scholar 

  63. H. Schneider and W. Hiller, J. Polym. Sci., Part B: Polym. Phys. 28, 1001 (1990).

    CAS  Google Scholar 

  64. P. G. Klein, C. H. Adams, M. G. Brereton, M. E. Ries, T. M. Nicholson, L. R. Hutchings, and R. W. Richards, Macromolecules 31, 8871 (1998).

    CAS  Google Scholar 

  65. V. M. Chernov and G. S. Krasnopol’skii, J. Exp. Theor. Phys. 107, 302 (2008).

    CAS  Google Scholar 

  66. J. A. Kornfield and G.-C. Chung, Macromolecules 25, 4442 (1992).

    CAS  Google Scholar 

  67. M. Kopf, G. Schnur, and R. Kimmich, Macromolecules 21, 3340 (1988).

    Google Scholar 

  68. R. Kimmich, M. Kopf, and P. Callaghan, J. Polym. Sci.: Polym. Phys. Ed. 29, 1025 (1988).

    Google Scholar 

  69. H. W. Weber and R. Kimmich, Macromolecules 26, 2597 (1993).

    CAS  Google Scholar 

  70. M. E. Ries, M. G. Brereton, J. M. Cruickshank, P. G. Klein, and I. M. Ward, Macromolecules 28, 3282 (1995).

    CAS  Google Scholar 

  71. P. T. Callaghan, Polymer 29, 1951 (1998).

    Google Scholar 

  72. J. P. Cohen-Addad and M. Domard, and S. Boileau, J. Chem. Phys. 75, 4107 (1981).

    CAS  Google Scholar 

  73. A. Guillermo, J. P. Cohen-Addad, and D. Bytchenkoff, J. Chem. Phys. 113, 5098 (2000).

    CAS  Google Scholar 

  74. A. Guillermo and J. P. Cohen-Addad, J. Chem. Phys. 116, 3141 (2002).

    CAS  Google Scholar 

  75. E. Schille, J. P. Cohen-Addad, and A. Guillermo, Macromolecules 37, 2144 (2004).

    CAS  Google Scholar 

  76. F. V. Chavez and K. Saalwachter, Macromolecules 44, 1549 (2011).

    Google Scholar 

  77. V. M. Litvinov, M. E. Ries, T. W. Baughman, A. Henke, and P. P. Matloka, Macromolecules 46, 541 (2013).

    CAS  Google Scholar 

  78. E. Fischer, R. Kimmich, and N. Fatkullin, J. Chem. Phys. 106, 9883 (1997).

    CAS  Google Scholar 

  79. G. Simon, H. Schneider, and K.-G. Hauler, Prog. Colloid Polym. Sci. 78, 30 (1988).

    CAS  Google Scholar 

  80. G. Simon, K. Baumann, and W. Gronski, Macromolecules 25, 3624 (1992).

    CAS  Google Scholar 

  81. N. Fatkullin, A. Gubaidullin, C. Mattea, and S. Stapf, J. Chem. Phys. 137, 224907 (2012).

    CAS  PubMed  Google Scholar 

  82. M. Engelsberg and I. J. Lowe, Phys. Rev. B: Solid State 10, 822 (1974).

    CAS  Google Scholar 

  83. M. L. H. Gruwel, Chem. Phys. Lett. 191, 621 (1992).

    CAS  Google Scholar 

  84. B. V. Fine, T. A. Elsayed, E. G. Sorte, and B. Saam, Phys. Rev. B: Condens. Matter Mater. Phys. 86, 054439 (2012).

    Google Scholar 

  85. B. Meier, J. Kohlrautz, and J. Haase, Phys. Rev. Lett. 108, 177602 (2012).

    PubMed  Google Scholar 

  86. U. Shmueli, M. Polak, and M. Sheinblatt, J. Chem. Phys. 59, 4535 (1973).

    CAS  Google Scholar 

  87. M. Polak, M. Sheinblatt, and U. Shmueli, J. Magn. Reson. 16, 252 (1974).

    CAS  Google Scholar 

  88. U. Shmueli, M. Sheinblatt and M. Polak, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Grystallogr. 32, 192 (1976).

    Google Scholar 

  89. R. Barenwald, Y. Champoret, K. Saalwachter, and K. Schaler, J. Phys. Chem. B 116, 13089 (2012).

    CAS  PubMed  Google Scholar 

  90. U. Powles, D. M. Heyes, G. Rickayzen, and W. A. B. Evans, J. Chem. Phys. 131, 214509 (2009).

    CAS  PubMed  Google Scholar 

  91. R. Lindsey and G. B. Patterson, J. Chem. Phys. 73, 3348 (1980).

    CAS  Google Scholar 

  92. G. C. Borgia, R. J. S. Brown, and P. Fantazzini, J. Magn. Reson. 132, 65 (1998).

    CAS  PubMed  Google Scholar 

  93. Y.-Q. Song, L. Venkataramanan, M. D. Hurlimann, M. Flaum, P. Frulla, and C. Straley, J. Magn. Reson. 154, 261 (2002).

    CAS  PubMed  Google Scholar 

  94. C. G. Koay and P. J. Basser, J. Magn. Reson. 179, 317 (2006).

    CAS  PubMed  Google Scholar 

  95. S. Ghosh, K. M. Keener, and Y. Pan, J. Magn. Reson. 191, 226 (2008).

    CAS  PubMed  Google Scholar 

  96. X. Li, L. Kong, J. Cheng, and L. Wu, J. Geophys. Eng. 12, 144 (2015).

    Google Scholar 

  97. L. Dagys, V. Klimavicius, and V. Balevicius, J. Chem. Phys. 145, 114202 (2016).

    Google Scholar 

  98. K. Nusser, G. J. Schneider, and D. Richter, Macromolecules 46, 6263 (2013).

    CAS  Google Scholar 

  99. W. Weibull, J. Appl. Mech. 18, 293 (1951).

    Google Scholar 

  100. S. Kaufman and D. J. Bunger, J. Magn. Reson. 2, 218 (1970).

    Google Scholar 

  101. H. Tanaka and T. Nishi, J. Appl. Phys. 60, 1306(1986).

    CAS  Google Scholar 

  102. H. Tanaka and T. Nishi, J. Chem. Phys. 85, 6197(1986).

    CAS  Google Scholar 

  103. E. W. Hansen, X. Gong, and Q. Chen, Macromol. Chem. Phys. 214, 844 (2013).

    CAS  Google Scholar 

  104. G. A. Korn and T. M. Korn, Mathematical Handbook. For Scientists and Engineers. Definitions, Theorems, and Formulas for Reference and Review, 2nd en. (McGraw-Hill, New York; Sydney, 2000).

  105. T. C. Farrar and E. D. Becker, Pulse and Fourier Transform NMR (Acad. Press, New York; London, 1971).

    Google Scholar 

  106. S. Kaufman, W. P. Slichter, and D. D. Davis, J. Polym. Sci., Part A-2: Polym. Chem. 9, 829 (1971).

    CAS  Google Scholar 

  107. D. W. McCall and E. W. Anderson, J. Polym. Sci., Part A-2: Polym. Chem. 1, 1175 (1963).

    CAS  Google Scholar 

  108. E. Sternin, M. Bloom, and A. L. MacKay, J. Magn. Reson. 55, 274 (1983).

    CAS  Google Scholar 

  109. K. P. Whittall, E. Sternin, M. Bloom, and A. L. MacKay, J. Magn. Reson. 84, 64 (1989).

    Google Scholar 

  110. M. A. McCabe and S. Wassal, Solid State Nucl. Magn. Reson. 10, 53 (1997).

    CAS  PubMed  Google Scholar 

  111. V. Macho, L. Brombacher, and H. W. Spiess, Appl. Magn. Reson. 20, 405 (2001).

    CAS  Google Scholar 

  112. K. Hock, K. Earle, Appl. Magn. Reson. 45, 859 (2001).

    Google Scholar 

  113. H. W. Spiess, Colloid Polym. Sci. 261, 193 (1983).

    CAS  Google Scholar 

  114. H. W. Spiess, Adv. Polym. Sci. 66, 23 (1985).

    CAS  Google Scholar 

  115. H. W. Spiess, Macromolecules 50, 1761 (2017).

    CAS  Google Scholar 

  116. W.-Y. Lin and F. D. Blum, Macromolecules 31, 4135 (1998).

    CAS  Google Scholar 

  117. J. Hassan, Phys. B 407, 179 (2012).

    CAS  Google Scholar 

  118. C. R. Bower, Y. Wei, B. S. Aitken, C. R. Reeg, C. D. Akel, and K. B. Wagener, Polymer 53, 2633 (2012).

    Google Scholar 

  119. W. Derbyshire, M. Van den Bosch, D. Van Dusschoten, W. MacNaughtan, I. A. Farhat, M. A. Hemminga, and J. R. Mitchell, J. Magn. Reson. 168, 278 (2004).

    CAS  PubMed  Google Scholar 

  120. S. Stahlberg, S. Lange, B. Dobner, and D. Huster, Langmuir 32, 2023 (2016).

    CAS  PubMed  Google Scholar 

  121. M. Shaghaghi, M.-T. Chen, Y.-W. Hsue, M. J. Zukermann, and J. L. Thewalt, Langmuir 32, 7654 (2016).

    CAS  PubMed  Google Scholar 

  122. H. A. Resing, J. Chem. Phys. 43, 669 (1965).

    CAS  Google Scholar 

  123. L. J. Lynch, K. H. Marsden, and E. P. Geoge, J. Chem. Phys. 51, 5673 (1969).

    CAS  Google Scholar 

  124. L. J. Lynch and K. H. Marsden, J. Chem. Phys. 51 (12), 5681 (1969).

    CAS  PubMed  Google Scholar 

  125. W. P. Weglarz and H. Haranczyk, J. Phys. D: Appl. Phys. 33, 1909 (2000).

    CAS  Google Scholar 

  126. M. Bak, R. Schultz, T. Vosegaard, and N. C. Nielsen, J. Magn. Reson. 154, 28 (2002).

    CAS  PubMed  Google Scholar 

  127. A. Jerschow, J. Magn. Reson. 176, 7(2005).

    CAS  PubMed  Google Scholar 

  128. M. Veshtort and R. G. Griffin, J. Magn. Reson. 178, 248 (2006).

    CAS  PubMed  Google Scholar 

  129. Z. Tošner, R. Andersen, B. Stevensson, M. Eden, N. C. Nielsen, and T. Vosegaard, J. Magn. Reson. 246, 79 (2014).

    PubMed  Google Scholar 

  130. H. J. Hogben, M. Krzystyniak, G. T. P. Charnock, P. J. Hore, and I. Kuprov, J. Magn. Reson. 208, 179 (2011).

    CAS  PubMed  Google Scholar 

  131. I. Kuprov, Magn. Reson. Chem. 56, 415 (2018).

    CAS  PubMed  Google Scholar 

  132. C. Nielsen and I. A. Solov’yov, J. Chem. Phys. 151, 194105 (2019).

    PubMed  Google Scholar 

  133. S. E. Svanson, Acta Chem. Scand. 16, 2212 (1962).

    CAS  Google Scholar 

  134. D. C. Look, I. J. Lowe, and J. A. Northby, J. Chem. Phys. 44, 3441 (1966).

    CAS  Google Scholar 

  135. B. A. Van Baren, C. Emid, C. Steenbergen, and R. A. Wind, J. Magn. Reson. 4, 466 (1972).

    Google Scholar 

  136. D. D. Traficante and M. M. McGregor, Concepts Magn. Reson. 14, 308 (2002).

    Google Scholar 

  137. R. M. Gregory and A. D. Bain, Concepts Magn. Reson., Part A 34, 305 (2009).

    Google Scholar 

  138. R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed. (McGraw-Hill, New York, 2000).

    Google Scholar 

  139. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Techniques (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Pestryaev.

Supplementary Information

Description of the Interactive Toolkit

Description of the Interactive Toolkit

The supplement is the interactive analytical toolkit based on the MS Excel 2010 and contains the numerical Fourier transformation of the relaxation curves, which can be compared with the Pake doublet NMR-absorption line broadened by the Lorentz line. Some publications have described such specialized software suites that reduce time-consuming routine data processing [111, 125], as well as simulating data instead of their simple fitting [126132], but these program are either not free or require non-standard computer software and hardware. The suggested toolkit is intended to work on typical modern personal computer.

The initial simple example is the stretch exponential from formula (6b) or (7b), where all parameters pE, T2E, and 0 ≤ β ≤ 2 can be changed. Inputting any parameter value instantly affects the spectral line shape by the discrete Fourier transform procedure (8). This example can be replaced by a digitized relaxation curve. Further, the spectral line curve can be manually copied or readdressed onto another Excel sheet where it is visualized together with the Pake doublet, whose shape, by-turn, is varied with the help of two parameters—splitting bbP and broadening abК—which both have dimension of reciprocal second, s−1. The physical interpretation of b is the characteristic RDC in a spin system with isotropic space orientation of the inter-spin vectors; a is the line half-width broadening the doublet, what is analytically described by the convolution equation which is equivalent to Eq. (8) [12, 49, 133135]:

$${\text{g}}\left( {{\omega }} \right) = \mathop \smallint \limits_{ - \infty }^\infty P\left( {{{\omega '}}} \right)G\left( {{{\omega }} - {{\omega '}}} \right)d{{\omega '}}.$$
(A1)

Here, the Pake probability density P(ω') is a piecewise continuous function derived by converting the inter-spin orientation vector into the resonance frequency offset ω':

$$P({{\omega '}})\, = \,\left\{ \begin{gathered} \frac{1}{{\sqrt {48b} }}\,\frac{1}{{\sqrt {b - {{\omega '}}} }},\quad - {\kern 1pt} 2b < {{\omega '}} < - b \hfill \\ \frac{1}{{\sqrt {48b} }}\left[ {\frac{1}{{\sqrt {b\, - \,{{\omega '}}} }}\, + \,\frac{1}{{\sqrt {b\, + \,{{\omega '}}} }}} \right],~\quad - {\kern 1pt} b\, < \,{{\omega '}}\, < \,b \hfill \\ \frac{1}{{\sqrt {48b} }}\,\frac{1}{{\sqrt {b + {{\omega '}}} }},\quad b < {{\omega '}} < 2b. \hfill \\ \end{gathered} \right.$$
(A2)

Each infinitely narrow line in this doublet can be broadened by either Lorentzian (A3a) or Gaussian (A3b), absorption lines:

$$G\left( {{{\omega }} - {{\omega '}}} \right) = \frac{a}{\pi }\,\frac{1}{{{{a}^{2}} + {{{\left( {{{\omega }} - {{\omega '}}} \right)}}^{2}}}},\quad ~{{T}_{2}} = \frac{1}{a};$$
(A3a)
$$G\left( {{{\omega }} - {{\omega '}}} \right) = \frac{1}{{a\sqrt {2\pi } }}\exp \left[ {{{{\left( {\frac{{{{\omega }} - {{\omega '}}}}{{a\sqrt 2 }}} \right)}}^{2}}} \right].$$
(A3b)

For all melt temperatures, the broadening is caused by the DC of the fast fluctuating Kuhn segments, so, in this case, it is necessary to apply formula (A3a); the Gaussian broadening (A3b) is ordinarily appeared in solid-phase systems. If the transverse magnetic relaxation is dominated by a single contribution of any line shape but not two as in formula (7a), then, in both cases, the line half-width a determines the relaxation rate 1/T2, which is given by the second term in Eq. (A3a).

The input of the mentioned parameters also instantly changes the Pake doublet shape observed on the background of the approximated spectrum. As a result, it is possible to obtain the maximal coincidence of two spectra or determine whether the explored relaxation function requires the Pake doublet superposition with some another spectrum, as mentioned. The coincidence visualization is added by common quantitative characteristic, the relative root-mean-square difference of the overlapped curves [104].

The time and frequency ranges on both sheets are varied arbitrarily, which is essential to obtain a relaxation curve with deep damping (ca. 0.01 of the amplitude value) and revise the spectrum wings. The limitations are only imposed by the prescribed discretized time and frequency ranges, 400 points. In addition, it must be remembered that the rectangular pulse in the time domain is converted by the Fourier transform into a zero-centered bell-shaped curve with slowly damping oscillations, a so-called, sinc-function [49, 104, 136, 137]. This peculiarity appears in the NMR Fourier spectroscopy if the acquisition time is insufficient to achieve the FID damping approximately 0.01 of its amplitude value. Practically, this degree of attenuation refers to the missing stepped signal in the FID tail. The necessary damping limit is obtained by gradually decreasing T2EF; that is, the oscillations on spectrum wings vanish at some value [138, 139].

The depth of experimental data attenuation is defined by their previous digitization; therefore, it is more complicated to reduce the tail jump. In this case one might try to add the tail analytic extension until the necessary depth is reached [139] or to simply cut the wing oscillations by narrowing frequency range. Though, it is important to remember, the last technique changes the amplitude of normalized spectrum because its area is partly removed by cutting the wings.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pestryaev, E.M. Chain Heterogeneity in Simulated Polymer Melts: NMR Free Induction Decay and Absorption Line. Polym. Sci. Ser. A 62, 779–792 (2020). https://doi.org/10.1134/S0965545X20060097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X20060097

Navigation