Skip to main content
Log in

Influences of Molecular Structure on the Non-Isothermal Crystallization Behavior of β-Nucleated Isotactic Polypropylene

  • STRUCTURE AND PROPERTIES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

In order to explore the effect of molecular structure on the crystallization and polymorphic behavior of β-nucleated isotactic polypropylene (β-iPP), four commercial iPP samples with different average isotacticities, molecular weights and isotactic distributions were used. The relationship between the molecular structure characteristics and β-crystallization behavior were investigated by means of xylene solvent fractionation (XS), successive self-nucleation and annealing fractionation (SSA), carbon-13 nuclear magnetic resonance spectrometry (13C NMR), gel permeation chromatography (GPC), melt index (MI) and differential scanning calorimetry (DSC). Results of molecular structure characterization revealed that their isotacticity can be ranged as F401 > 5014L > F03G ≈ T38F, while the order of their isotactic distribution width is 5014L ≈ T38F > F401 ≈ F03G. Results of crystallization kinetics revealed that the molecular weight of the samples has little effect on their crystallization and polymorphic behavior. Meanwhile, crystallization activation energy Ec can be ranged as 5014L < F401 < F03G < T38F, indicating that when the molecular weight was above a certain degree, the isotacticity is the main factor affecting the crystallization ability of β-type iPP (β-iPP). The higher the isotacticity and the wider the distribution is, the stronger the β-crystallization ability is. Moreover, the β-crystallization ability of the samples is closely related to the isotacticity of the sample, which can be effectively controlled by tuning the fraction of high isotacticity with high molecular weight components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. M. Du, B. Guo, J. Wan, Q. Zou and D. Jia, J. Polym. Res. 17, 109 (2010).

    CAS  Google Scholar 

  2. Á. Kmetty, T. Bárány, and J. Karger-Kocsis, Prog. Polym. Sci. 35, 1288 (2010).

    CAS  Google Scholar 

  3. J. Kang, J. Chen, Y. Cao, and H. Li, Polymer 51, 249 (2010).

    CAS  Google Scholar 

  4. B. Xiong, R. Chen, F. Zeng, J. Kang, and Y. Men, J. Membr. Sci. 545, 213 (2018).

    CAS  Google Scholar 

  5. Y. Yu, B. Xiong, F. Zeng, R. Xu, F. Yang, J. Kang, M. Xiang, L. Li, X. Sheng, and Z. Hao, Ind. Eng. Chem. Res. 57, 17142 (2018).

    CAS  Google Scholar 

  6. F. Zeng, R. Xu, L. Ye, B. Xiong, J. Kang, M. Xiang, L. Li, X. Sheng, and Z. Hao, Ind. Eng. Chem. Res. 58, 2217 (2019).

    CAS  Google Scholar 

  7. J. Kang, D. Chen, B. Xiong, N. Zheng, F. Yang, M. Xiang, and Z. Zheng, Ind. Eng. Chem. Res. 58, 23135 (2019).

    CAS  Google Scholar 

  8. X. Jiang, Y. Fang, Y. Yu, J. Kang, Y. Cao, M. Xiang, L. Li, X. Sheng, and Z. Hao, ACS Omega 4, 3020 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. G. Natta and P. Corradini, Nuovo Cimento 15, 40 (1960).

    CAS  Google Scholar 

  10. J. Kang, F. Yang, T. Wu, H. Li, Y. Cao, and M. Xiang, Eur. Polym. J. 48, 425 (2012).

    CAS  Google Scholar 

  11. G. Natta and P. Corradini, Nuovo Cimento 15, 40 (1960).

    CAS  Google Scholar 

  12. G. Natta, P. Pino, P. Corradini, F. Danusso, E. Mantica, G. Mazzanti, and G. Moraglio, J. Am. Chem. Soc. 77, 1708 (1955).

    CAS  Google Scholar 

  13. J. Karger-Kocsis, S. D. Wanjale, T. Abraham, T. Bárány, and A. A. Apostolov, J. Appl. Polym. Sci. 115, 684 (2010).

    CAS  Google Scholar 

  14. J. Kang, F. Yang, J. Chen, Y. Cao, and M. Xiang, Polym. Bull. 74, 1461 (2017).

    CAS  Google Scholar 

  15. Z. Qiyan, P. Hongmei, K. Jian, C. Ya, and X. Ming, Polym. Eng. Sci. 57, 989 (2017).

    Google Scholar 

  16. Y. Yansong, Z. Fangxinyu, C. Jinyao, K. Jian, Y. Feng, C. Ya, and X. Ming, Polym. Compos. 40, E440 (2018).

    Google Scholar 

  17. C. Zhang, B. Wang, J. Yang, D. Ding, X. Yan, G. Zheng, K. Dai, C. Liu, and Z. Guo, Polymer 60, 40 (2015).

    CAS  Google Scholar 

  18. Y. Qin, Y. Xu, L. Zhang, G. Zheng, X. Yan, K. Dai, C. Liu, C. Shen, and Z. Guo, Polymer 100, 111 (2016).

    CAS  Google Scholar 

  19. B. Lotz, J. C. Wittmann, and A. J. Lovinger, Polymer 37, 4979 (1996).

    CAS  Google Scholar 

  20. S. Brückner, P. J. Phillips, K. Mezghani, and S. V. Meille, Macromol. Rapid Commun. 18, 1 (1997).

    Google Scholar 

  21. I. Hosier, R. Alamo, P. Esteso, J. Isasi, and L. Mandelkern, Macromolecules 36, 5623 (2003).

    CAS  Google Scholar 

  22. S. Wang and D. Yang, J. Polym. Sci., Part B: Polym. Phys. 42, 4320 (2004).

    CAS  Google Scholar 

  23. Z. Chen, B. Wang, J. Kang, H. Peng, J. Chen, F. Yang, Y. Cao, H. Li, M. Xiang, and Z. Chen, Polym. Adv. Technol. 25, 353 (2014).

    CAS  Google Scholar 

  24. H. D. Keith, F. J. Padden, N. M. Walter, and H. W. J. Wyckoff, J. Appl. Phys. 30, 1485 (1959).

    CAS  Google Scholar 

  25. J. Varga, J. Macromol. Sci., Part B: Phys. 41, 1121 (2002).

    Google Scholar 

  26. J. Varga and A. Menyhárd, Macromolecules 40, 2422 (2007).

    CAS  Google Scholar 

  27. A. J. Lovinger, J. O. Chua, and C. C. Gryte, J. Polym. Sci., Part B: Polym. Phys. 15, 641 (1977).

    CAS  Google Scholar 

  28. J. Kang, G. Weng, Z. Chen, J. Chen, Y. Cao, F. Yang, and M. Xiang, RSC Adv. 56, 29514 (2014).

  29. B. Wang, Z. Chen, J. Kang, F. Yang, J. Chen, Y. Cao, and M. Xiang, Thermochim. Acta 604, 67 (2015).

    CAS  Google Scholar 

  30. Q. Zhang, Z. Chen, B. Wang, J. Chen, F. Yang, J. Kang, Y. Cao, M. Xiang, and H. Li, J. Appl. Polym. Sci. 132, 41355 (2015).

    Google Scholar 

  31. L. Zhang, Y. Qin, G. Zheng, K. Dai, C. Liu, X. Yan, J. Guo, C. Shen, and Z. Guo, Polymer 90, 18 (2016).

    CAS  Google Scholar 

  32. Z. Liu, X. Liu, G. Zheng, K. Dai, C. Liu, C. Shen, R. Yin, and Z. Guo, Polym. Test. 58, 227 (2017).

    CAS  Google Scholar 

  33. L. Xu, K. Xu, X. Zhang, F. Liu, and M. Chen, Polym. Adv. Technol. 21, 807 (2010).

    CAS  Google Scholar 

  34. J. Varga, J. Macromol. Sci., Part B: Phys. 41, 1121 (2002).

    Google Scholar 

  35. Z. Horvath, I. E. Sajo, K. Stoll, A. Menyhard, and J. Varga, eXPRESS Polym. Lett. 4, 101 (2010).

    CAS  Google Scholar 

  36. Y. Yu, R. Xu, J. Chen, J. Kang, M. Xiang, Y. Li, L. Li, and X. Sheng, RSC Adv. 9, 19630 (2019).

  37. Y. F. Zhang, P. Z. Zhou, and Y. Li, Polym. Adv. Technol. 60, 81 (2018).

    Google Scholar 

  38. F. Luo, K. Wang, N. Ning, C. Geng, H. Deng, F. Chen, Q. Fu, Y. Qian, and D. Zheng, Polym. Adv. Technol. 22, 2044 (2011).

    CAS  Google Scholar 

  39. K. Jian, Z. Chen, J. Chen, Y. Feng, G. Weng, Y. Cao, and X. Ming, Thermochim. Acta 599, 42 (2015).

    Google Scholar 

  40. A. Marigo, C. Marega, V. Causin, and P. Ferrari, J. Appl. Polym. Sci. 91, 1008 (2010).

    Google Scholar 

  41. R. Paukkeri and A. Lehtinen, Polymer 34, 4075 (1993).

    CAS  Google Scholar 

  42. X. Sun, H. Li, X. Zhang, D. Wang, J. M. Schultz, and S. Yan, Macromolecules 43, 561 (2010).

    CAS  Google Scholar 

  43. A. J. Müller and M. L. Arnal, Prog. Polym. Sci. 30, 559 (2005).

    Google Scholar 

  44. A. J. Müller, A. T. Lorenzo, and M. L. Arnal, Macromol. Symp. 277, 207 (2009).

    Google Scholar 

  45. A. J. Müller, R. M. Michell, R. A. Pérez, and A. T. Lorenzo, Eur. Polym. J. 65, 132 (2015).

    Google Scholar 

  46. Z. Chen, W. Kang, J. Kang, J. Chen, F. Yang, Y. Cao, and M. Xiang, Polym. Bull. 72, 3283 (2015).

    CAS  Google Scholar 

  47. Y. Yu, F. Zeng, J. Chen, J. Kang, F. Yang, Y. Cao, and M. Xiang, J. Therm. Anal. Calorim. 136, 1667 (2018).

    Google Scholar 

  48. J. Wang, R. Xu, F. Yang, J. Kang, Y. Cao, and M. Xiang, J. Membr. Sci. 556, 374 (2018).

    CAS  Google Scholar 

  49. R. Xu, J. Wang, D. Chen, T. Liu, Z. Zheng, F. Yang, J. Chen, J. Kang, Y. Cao, and M. Xiang, J. Membr. Sci. 595, 117472 (2020).

    Google Scholar 

  50. V. Busico and R. Cipullo, Prog. Polym. Sci. 26, 443 (2001).

    CAS  Google Scholar 

  51. V. Busico, R. Cipullo, G. Monaco, G. Talarico, M. Vacatello, J. C. Chadwick, A. L. Segre, and O. Sudmeijer, Macromolecules. 32, 4173 (1999).

    CAS  Google Scholar 

  52. S. Anantawaraskul, J. B. P. Soares, and P. M. Wood-Adams, Polym. Anal. Polym. Theory 2005, 686 (2005).

    Google Scholar 

  53. B. Monrabal, J. Appl. Polym. Sci. 52, 491 (1994).

    CAS  Google Scholar 

  54. J. B. P. Soares and A. E. Hamielec, Polymer 36, 1639 (1995).

    CAS  Google Scholar 

  55. L. Wild and C. Blatz, New Advances in Polyolefins (Springer, New York, 1993).

    Google Scholar 

  56. B. Monrabal, Macromol. Symp. 110, 81 (1996).

    CAS  Google Scholar 

  57. J. B. P. Soares and S. Anantawaraskul, J. Polym. Sci., Part B: Polym. Phys. 43, 1557 (2005).

    CAS  Google Scholar 

  58. B. Monrabal, L. Romero, N. Mayo, and J. Sancho-Tello, Macromol. Symp. 282, 14 (2010).

    Google Scholar 

  59. B. Monrabal, J. Sancho-Tello, N. Mayo, and L. Romero, Macromol. Symp. 257, 71 (2007).

    CAS  Google Scholar 

  60. B. Fillon, B. Lotz, A. Thierry and J. C. Wittmann, J. Polym. Sci., Part B: Polym. Phys. 31, 1395 (1993).

    CAS  Google Scholar 

  61. B. Fillon, A. Thierry, J. C. Wittmann, and B. Lotz, J. Polym. Sci., Part B: Polym. Phys. 31, 1407 (1993).

    CAS  Google Scholar 

  62. B. Fillon, J. C. Wittmann, B. Lotz, A. Thierry, B. Fillon, J. C. Wittmann, B. Lotz, and A. Thierry, J. Polym. Sci., Part B: Polym. Phys. 31(10), 1383 (1993).

    CAS  Google Scholar 

  63. U. W. Gedde, Polymer Physics (Chapman and Hall, London, 1995), p. 144.

    Google Scholar 

  64. E. B. Bond, J. E. Spruiell, and J. S. Lin, J. Polym. Sci., Part B: Polym. Phys. 37, 3050 (1999).

    CAS  Google Scholar 

  65. M. Iijima and G. Strobl, Macromolecules 33, 5204 (2000).

    CAS  Google Scholar 

  66. A. Wlochowitcz and M. Eder, Polymer. 25, 1268 (1984).

    Google Scholar 

  67. H. E. Kissinger, Anal Chem. 29, 1702 (1957).

    CAS  Google Scholar 

  68. R. L. Blaine and H. E. Kissinger, Thermochim. Acta 540, 1 (2012).

    CAS  Google Scholar 

  69. A. Turner-Jones, J. M. Aizlewood, and D. R. Beckett, Makromol Chem. 75, 136 (1964).

    Google Scholar 

  70. J. X. Li, W. L. Cheung, and J. Demin, Polymer 40, 1219 (1999).

    CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the National Natural Science Foundation of China (NSFC 51503134, 51721091), the State Key Laboratory of Polymer Materials Engineering (Grant no. SKLPME 2017-3-02) and Fundamental Research Funds for the Central Universities for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuduo Song or Jian Kang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weijiao Jiang, Song, Y., Song, X. et al. Influences of Molecular Structure on the Non-Isothermal Crystallization Behavior of β-Nucleated Isotactic Polypropylene. Polym. Sci. Ser. A 62, 616–629 (2020). https://doi.org/10.1134/S0965545X20330032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X20330032

Navigation