Skip to main content
Log in

Culturable Bacterial Communities Isolated from Cryo-Arid Soils: Phylogenetic and Physiological Characteristics

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The results of the phylogenetic analysis and analysis of the physiological characteristics of metabolic activity of strains isolated from frozen sedimentary rocks collected in the Antarctic and the Severnaya Zemlya archipelago are reported in this article. A comparable abundance of cultured cells and close morphological diversity of colony morphotypes were revealed in all samples. Representatives of the Actinobacteria and Firmicutes phyla were predominant in the cultured bacterial communities. These communities were characterized by mesophilic and neutrophilic optima, as well as by the wide ranges of temperatures and pH suitable for metabolic activity. Moderate halotolerance in the presence of sodium or potassium chloride, as well as the high inhibitory effect of sodium hydrocarbonate and low inhibitory effect of magnesium sulfate, were revealed. The communities were highly resistant to the presence of 5% magnesium perchlorate in the culture medium. Strains resistant to antibiotics in the composition of the medium were revealed: The isolated strains were the most resistant to ampicillin, chloramphenicol, and cephalexin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Andersson, D.I., Persistence of antibiotic resistant bacteria, Curr. Opin. Microbiol., 2003, vol. 6, no. 5, pp. 452–456.

    Article  Google Scholar 

  2. Bai, Y., Yang, D., Wang, J., Xu, S., Wang, X., and An, L., Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China, Res. Microbiol., 2006, vol. 157, no. 8, pp. 741–751.

    Article  Google Scholar 

  3. Belov, A.A., Cheptsov, V.S., and Vorobyova, E.A., Soil bacterial communities of Sahara and Gibson deserts: Physiological and taxonomical characteristics, AIMS Microbiol., 2018, vol. 4, no. 4, pp. 685–710.

    Article  Google Scholar 

  4. Belov, A.A., Cheptsov, V.S., Vorobyova, E.A., Manucharova, N.A., and Ezhelev, Z.S., Stress-tolerance and taxonomy of culturable bacterial communities isolated from a central Mojave Desert soil sample, Geosciences, 2019, vol. 9, no. 4, p. 166. https://doi.org/10.3390/geosciences9040166

    Article  Google Scholar 

  5. Bulat, S.A., Microbiology of the subglacial Lake Vostok: first results of borehole-frozen lake water analysis and prospects for searching for lake inhabitants, Philos. Trans. R. Soc., A, 2016, vol. 374, no. 2059, p. 20140292.

    Article  Google Scholar 

  6. Bull, A.T., Actinobacteria of the extremobiosphere, Extremophiles Handbook, 2011, pp. 1203–1240.

  7. Chattopadhyay, M.K., Mechanism of bacterial adaptation to low temperature, J. Biosci., 2006, vol. 31, no. 1, pp. 157–165.

    Article  Google Scholar 

  8. Christner, B.C., Kvitko, B.H., and Reeve, J.N., Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole, Extremophiles, 2003, vol. 7, no. 3, pp. 177–183.

    Article  Google Scholar 

  9. Clark, B.C. and Van Hart, D.C., The salts of Mars, Icarus, 1981, vol. 45, no. 2, pp. 370–378.

    Article  Google Scholar 

  10. Clarke, A., The thermal limits to life on Earth, Int. J. Astrobiol., 2014, vol. 13, no. 2, pp. 141–154.

    Article  Google Scholar 

  11. Efimenko, T.A., Efremenkova, O.V., Demkina, E.V., Petrova, M.A., Sumarukova, I.G., Vasilyeva, B.F., and El’‑Registan, G.I., Bacteria isolated from Antarctic permafrost are efficient antibiotic producers, Microbiology, 2018, vol. 87, no. 5, pp. 692–698.

    Article  Google Scholar 

  12. Foght, J., Aislabie, J., Turner, S., Brown, C.E., Ryburn, J., Saul, D.J., and Lawson, W., Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers, Microb. Ecol., 2004, vol. 47, no. 4, pp. 329–340.

    Article  Google Scholar 

  13. Gilichinsky, D.A., Wilson, G.S., Friedmann, E.I., Mckay, C.P., Sletten, R.S., Rivkina, E.M., Vishnivetskaya, T.A., Erokhina, L.G., Ivanushkina, N.E., Kochkina, G.A., Shcherbakova, V.A., Soina, V.S., Spirina, E.V., Vorobyova, E.A., Fyodorov-Davydov, D.G., Hallet, B, Ozerskaya, S.M., Sorokovikov, V.A., Laurinavichyus, K.S., Shatilovich, A.V., Chanton, J.P., Ostroumov, V.E., and Tiedje, J.M., Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology, Astrobiology, 2007, vol. 7, no. 2, pp. 275–311.

    Article  Google Scholar 

  14. Gilichinsky, D., Vishnivetskaya, T., Petrova, M., Spirina, E., Mamykin, V., and Rivkina, E., Bacteria in permafrost, Psychrophiles: From Biodiversity to Biotechnology, Margesin, R., Schinner, F., Marx, J.C., and Gerday, C., Eds., Berlin, Heidelberg: Springer, 2008, pp. 83–102.

    Google Scholar 

  15. Goordial, J., Davila, A., Lacelle, D., Pollard, W., Marinova, M.M., Greer, C.W., DiRuggiero, J., McKay, C.P., and Whyte, L.G., Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica, ISME J., 2016, vol. 10, no. 7, p. 1613.

    Article  Google Scholar 

  16. Hallbeck, L., Microbial Processes in Glaciers and Permafrost. A Literature Study on Microbiology Affecting Groundwater at Ice Sheet Melting, Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2009.

    Google Scholar 

  17. Hartmann, D.L., Global Physical Climatology, Newnes, 2015, vol. 103.

    Google Scholar 

  18. Humphrey, J., Seitz, T., Haan, T., Ducluzeau, A.-L., and Drown, D.M., Complete genome sequence of Pantoea agglomerans TH81, isolated from a permafrost thaw gradient, Microbiol. Resour. Announc., 2019, vol. 8, no. 1, p. e01486-18. https://doi.org/10.1128/MRA.01486-18

    Article  Google Scholar 

  19. Jansson, J.K. and Taş, N., The microbial ecology of permafrost, Nat. Rev. Microbiol., 2014, vol. 12, no. 6, p. 414.

    Article  Google Scholar 

  20. Kryazhevskikh, N.A., Demkina, E.V., Manucharova, N.A., Soina, V.S., Gal’chenko, V.F., and El’-Registan, G.I., Reactivation of dormant and nonculturable bacterial forms from paleosoils and subsoil permafrost, Microbiology, 2012, vol. 81, no. 4, pp. 435–445.

    Article  Google Scholar 

  21. Lopatina, A., Krylenkov, V., and Severinov, K., Activity and bacterial diversity of snow around Russian Antarctic stations, Res. Microbiol., 2013, vol. 164, no. 9, pp. 949–958.

    Article  Google Scholar 

  22. Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J., and Setlow, P., Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments, Microbiol. Mol. Biol. Rev., 2000, vol. 64, no. 3, pp. 548–572.

    Article  Google Scholar 

  23. Petrovskaya, L.E., Novototskaya-Vlasova, K.A., Spirina, E.V., Khokhlova, G.V., Rivkina, E.M., Gilichinsky, D.A., Dolgikh, D.A., and Kirpichnikov, M.P., Lipolytic enzymes of microorganisms from permafrost cryopegs, Dokl. Biol. Sci., 2012, vol. 445, no. 1, pp. 279–282.

    Article  Google Scholar 

  24. de los Ríos, A., Ascaso, C., Wierzchos, J., Fernández-Valiente, E., and Quesada, A., Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica, Appl. Environ. Microbiol., 2004, vol. 70, no. 1, pp. 569–580.

    Article  Google Scholar 

  25. Rivkina, E., Gilichinsky, D., Wagener, S., Tiedje, J., and McGrath, J., Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments, Geomicrobiol. J., 1998, vol. 15. no. 3, pp. 187–193.

    Article  Google Scholar 

  26. Rivkina, E.M., Friedmann, E.I., McKay, C.P., and Gilichinsky, D.A., Metabolic activity of permafrost bacteria below the freezing point, Appl. Environ. Microbiol., 2000, vol. 66, no. 8, pp. 3230–3233.

    Article  Google Scholar 

  27. Romero, D., Traxler, M.F., López, D., and Kolter, R., Antibiotics as signal molecules, Chem. Rev., 2011, vol. 111, no. 9, pp. 5492–5505.

    Article  Google Scholar 

  28. Rothschild, L.J. and Mancinelli, R.L., Life in extreme environments, Nature, 2001, vol. 409, no. 6823, pp. 1092–1101.

    Article  Google Scholar 

  29. Sepehr, S., Shahnavaz, B., Asoodeh, A., and Karrabi, M., Biodegradation of phenol by cold-tolerant bacteria isolated from alpine soils of Binaloud Mountains in Iran, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 2019, vol. 54, no. 4, pp. 367–379.

    Article  Google Scholar 

  30. Singh, P., Singh, S.M., Singh, R.N., Naik, S., Roy, U., Srivastava, A., and Bölter, M., Bacterial communities in ancient permafrost profiles of Svalbard, Arctic, J. Basic Microbiol., 2017, vol. 57, no. 12, pp. 1018–1036.

    Article  Google Scholar 

  31. Stetter, K.O., Fiala, G., Huber, G., Huber, R., and Segerer, A., Hyperthermophilic microorganisms, FEMS Microbiol. Lett., 1990, vol. 75, no. 2–3, pp. 117–124.

    Article  Google Scholar 

  32. Steven, B., Leveille, R., Pollard, W.H., and Whyte, L.G., Microbial ecology and biodiversity in permafrost, Extremophiles, 2006, vol. 10, no. 4, pp. 259–267.

    Article  Google Scholar 

  33. Steven, B., Pollard, W.H., Greer, C.W., and Whyte, L.G., Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic, Environ. Microbiol., 2008, vol. 10, no. 12, pp. 3388–3403.

    Article  Google Scholar 

  34. Suzina, N.E., Esikova, T.Z., Oleinikov, R.R., Gafarov, A.B., Shorokhova, A.P., Polivtseva, V.N., Ross, D.V., Abashina, T.N., Duda, V.I., and Boronin, A.M., Comparative characteristics of free-living ultramicroscopical bacteria obtained from extremal biotopes, Appl. Biochem. Microbiol., 2015, vol. 51, no. 2, pp. 159–168.

    Article  Google Scholar 

  35. Taş, N., Prestat, E., McFarland, J.W., Wickland, K.P., Knight, R., Behre, A.A., Jorgenson, T., Waldrop, M.P., and Jansson, J.K., Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest, ISME J., 2014, vol. 8, no. 9, p. 1904–1919.

    Article  Google Scholar 

  36. Vishnivetskaya, T.A., Allan, J., Cheng, K., Chourey, K., Hettich, R.L., Layton, A., Liu, X., Murphy, J., Myky-tczuk, N.C., Phelps, T.J., Pfiffner, S.M., Saarunya, G., Stackhouse, B.T., Whyte, L., and Onstott, T.C., Microbial activity in active and upper permafrost layers in Axel Heiberg Island, AGU Fall Meeting Abstracts, 2011.

  37. Wagner, D., Lipski, A., Embacher, A., and Gattinger, A., Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality, Environ. Microbiol., 2005, vol. 7, no. 10, pp. 1582–1592.

    Article  Google Scholar 

  38. Wood, W.A. and Krieg, N.R., Methods for general and molecular bacteriology, Washington, D.C.: Am. Soc. Microbiol., 1989.

    Google Scholar 

  39. Yergeau, E., Hogues, H., Whyte, L.G., and Greer, C.W., The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses, ISME J., 2010, vol. 4, no. 9, pp. 1206–1214.

    Article  Google Scholar 

  40. Yergeau, E., Newsham, K.K., Pearce, D.A., and Kowalchuk, G.A., Patterns of bacterial diversity across a range of Antarctic terrestrial habitats, Environ. Microbiol., 2007, vol. 9, no. 11, pp. 2670–2682.

    Article  Google Scholar 

  41. Zeng, Y.H., Koblížek, M., Li, Y.X., Liu, Y.P., Feng, F.Y., Ji, J.D., Jian, J.C., and Wu, Z.H., Long PCR RFLP of 16S-ITS-23S rRNA genes: a high resolution molecular tool for bacterial genotyping, J. Appl. Microbiol., 2013, vol. 114, no. 2, pp. 433–447.

    Article  Google Scholar 

  42. Zhang, G., Ma, X., Niu, F., Dong, M., Feng, H., An, L., and Cheng, G., Diversity and distribution of alkaliphilic psychrotolerant bacteria in the Qinghai–Tibet Plateau permafrost region, Extremophiles, 2007, vol. 11, no. 3, pp. 415–424.

    Article  Google Scholar 

  43. Zhu, S., Zhao, Q., Zhang, G., Jiang, Z., Sheng, H., Feng, H., and An, L., Paracoccus tibetensis sp. nov., isolated from Qinghai-Tibet Plateau permafrost, Int. J. Syst. Evol. Microbiol., 2013, vol. 63, no. 5, pp. 1902–1905.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-34-00331) and by the Program of the Presidium of the Russian Academy of Sciences “Evolution of the Organic World and Planetary Processes” (Subprogram 1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Belov.

Additional information

Translated by A. Panyushkina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, A.A., Cheptsov, V.S., Vorobyova, E.A. et al. Culturable Bacterial Communities Isolated from Cryo-Arid Soils: Phylogenetic and Physiological Characteristics. Paleontol. J. 54, 903–912 (2020). https://doi.org/10.1134/S0031030120080043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030120080043

Keywords:

Navigation