Skip to main content
Log in

The Influence of Alternating Current on Stress Corrosion Cracking of Grade X70 Pipe Steel

  • GENERAL PROBLEMS OF CORROSION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Alternating current accelerates stress corrosion cracking of grade X70 pipe steel in electrolytes of various compositions: 3.5% NaCl solution (pH 7), citrate buffer (pH 5.5), and a mixture of NS4 solution with borate buffer (pH 7). The increase in crack growth rate upon static load and deterioration of steel crack resistance during constant extension rate testing correlate with an increase in the metal corrosion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Marshakov, A.I. and Nenasheva, T.A., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 7, pp. 1122–1132.

    Article  CAS  Google Scholar 

  2. Marshakov, A.I. and Nenasheva, T.A., Korroz.: Mater., Zashch., 2010, vol. 7, pp. 1–6.

    Google Scholar 

  3. Liu, Z.Y., Li, X.G., and Cheng, Y.F., Electrochim. Acta, 2011, vol. 56, no. 11, pp. 4167–4175.

    Article  CAS  Google Scholar 

  4. Nenasheva, T.A., Marshakov, A.I., and Kasatkina, I.V., Korroz.: Mater., Zashch., 2015, vol. 5, pp. 9–17.

    Google Scholar 

  5. CEN/TS 15280: Evaluation of A. C. Corrosion Likelihood of Buried Pipelines—Application to Cathodically Protected Pipelines. Technical Specification, 2006.

  6. Instruktsiya po zashchite ot korrozii podzemnykh stal’nykh truboprovodov, raspolozhennykh v zone deistviya rel’sovogo elektrotransporta na peremennom toke (Manual on Corrosion Protection of Underground Steel Pipelines Situated in Action Zone of ac Rail Electric Transport), Moscow: Stroiizdat, 1972.

  7. Marshakov, A.I. and Nenasheva, T.A., Korroz.: Mater., Zashch., 2016, vol. 4, pp. 1–11.

    Google Scholar 

  8. Marshakov, A.I., Nenasheva, T.A., Kasatkin, E.V., and Kasatkina, I.V., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 7, pp. 1236–1245.

    Article  CAS  Google Scholar 

  9. Zhu, M., Du, C., Li, X., Liu, Z., Li, H., and Zhang, D., Corros. Sci., 2014, vol. 87, pp. 224–232.

    Article  CAS  Google Scholar 

  10. Zhu, M., Du, C., Li, X., Liu, Z., and Wang, S., Electrochim. Acta, 2014, vol. 117, pp. 351–359.

    Article  CAS  Google Scholar 

  11. Wan, H., Song, D., Liu, Z., Du, C., Zeng, Z., Yang, X., and Li, X., J. Nat. Gas Sci. Eng., 2017, vol. 38, pp. 458–465.

    Article  CAS  Google Scholar 

  12. Li, J., Elboujdaini, M., Fang, B., Revie, R.W., and Phaneuf, M.W., Corrosion, 2006, vol. 62, pp. 316–322.

    Article  CAS  Google Scholar 

  13. Ignatenko, V.E., Kuznetsov, Yu.I., Arabei, A.B., Igoshin, R.V., Bogdanov, R.I., and Marshakov, A.I., Korroz.: Mater., Zashch., 2011, no. 9, pp. 16–25.

  14. Ignatenko, V.E., Marshakov, A.I., Marichev, V.A., Mikhailovskii, Yu.N., and Petrov, N.A., Prot. Met., 2000, vol. 36, no. 2, pp. 111–117.

    Article  CAS  Google Scholar 

  15. Marshakov, A.I., Ignatenko, V.E., Bogdanov, R.I., and Arabey, A.B., Corros. Sci., 2014, vol. 83, pp. 209–216.

    Article  CAS  Google Scholar 

  16. Devanathan, M.A.V. and Stachurski, Z., J. Electrochem. Soc., 1964, vol. 111, no. 5, p. 619.

    Article  CAS  Google Scholar 

  17. Marshakov, A.I., Batishcheva, O.V., and Mikhailovskii, Yu.N., Zashch. Met., 1989, vol. 25, no. 6, p. 888.

    CAS  Google Scholar 

  18. Arabey, A.B., Bogdanov, R.I., Ignatenko, V.E., Nenasheva, T.A., and Marshakov, A.I., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 2, pp. 236–245.

    Article  CAS  Google Scholar 

  19. Lalvani, S.B. and Lin, X.A., Corros. Sci., 1994, vol. 36, no. 6, pp. 1039–1046.

    Article  CAS  Google Scholar 

  20. Lalvani, S.B. and Lin, X.A., Corros. Sci., 1996, vol. 38, no. 10, pp. 1709–1719.

    Article  CAS  Google Scholar 

  21. Suna, F., Sun, F., and Rena, S., Mater. Sci. Eng., A, 2017, vol. 685, pp. 145–153.

    Article  Google Scholar 

  22. Marshakov, A.I., Maleeva, M.A., Rybkina, A.A., and Elkin, V.V., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no. 1, pp. 40–49.

    Article  CAS  Google Scholar 

  23. Bogdanov, R.I., Marshakov, A.I., and Ignatenko, V.E., Korroz.: Mater., Zashch., 2011, vol. 11, pp. 30–37.

    Google Scholar 

  24. Nenasheva, T.A. and Marshakov, A.I., Korroz.: Mater., Zashch., 2009, vol. 2, pp. 1–6.

    Google Scholar 

  25. Nenasheva, T.A. and Marshakov, A.I., Korroz.: Mater., Zashch., 2008, vol. 4, pp. 10–15.

    Google Scholar 

  26. Nenasheva, T.A. and Marshakov, A.I., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 6, pp. 1018–1026.

    Article  CAS  Google Scholar 

  27. Public Inquiry Concerning Stress Corrosion Cracking on Canadian Oil and Gas Pipeline Steels, Report of NEB MH-2-95, 1996, p. 147.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The measurements were performed using the equipment of Center for Collective Use of the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 16-08-00445.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Nenasheva.

Additional information

Translated by I. Moshkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nenasheva, T.A., Marshakov, A.I. & Ignatenko, V.E. The Influence of Alternating Current on Stress Corrosion Cracking of Grade X70 Pipe Steel. Prot Met Phys Chem Surf 56, 1223–1231 (2020). https://doi.org/10.1134/S2070205120070126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120070126

Keywords:

Navigation