Skip to main content
Log in

Self-Propagating High-Temperature Synthesis of Silicon Carbide Nanofibers

  • SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The results of investigations into the organization of the synthesis of silicon carbide fibers in the gas phase using silicon powder, an energy additive of polytetrafluoroethylene (PTFE), and polyethylene (PE) powder by self-propagating high-temperature synthesis (SHS) are presented. Mixtures of the stoichiometric composition are used for experiments. Charge components are mixed in a drum with 3 L in volume with tungsten carbide balls for 30 min. The charge weight is 500 g. Experiments are performed in an SVS-30 industrial reactor. The combustion of the charge of the silicon + PTFE composition is accompanied by a rapid pressure rise from 0.5 to 4.0 MPa for a time shorter than 1 s and relatively rapid pressure drop to 1.5 MPa for 1.5 min. The combustion speed exceeds 50 cm/s. It is established that the combustion is accompanied by the spread of charge components, which is a consequence of the high process speed and intense gas liberation. A cottony light blue material, which consists of silicon carbide fibers 100–500 nm in thickness, is fabricated. The maximal reactor pressure during the combustion of the silicon + PTFE + PE composition reaches 3.1 MPa for 1 s and decreases to 1.5 MPa for 3 min. The combustion speed is about 40 cm/s. The entire accessory volume is filled by cottony blue-gray silicon carbide and SiC powder with equiaxial particles 0.5–3.0 μm in size combined into conglomerates. Silicon needlelike crystals are formed in a transient layer between the powder and silicon carbide fibers. The results of the experiments show the possibility of fabricating silicon carbide nanofibers in relatively large amounts under the combustion of exothermic mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Abderrazak, H. and Hmida, E., Silicon carbide: Synthesis and properties, in Properties and Applications of Silicon Carbide, Gerhardt, R., Ed., Rijeka: InTech, 2011, pp. 361–388.

    Google Scholar 

  2. Fantozzi, G. and Reynaud, P., Mechanical behavior of SiC fiber-reinforced ceramic matrix composites, Compr. Hard Mater. Ceram., 2014, no. 2, pp. 345–366.

  3. Young-Hang Koh, Hae-Won Kim, and Hyoun-Ee Kim, Microstructural evolution and mechanical properties of Si3N4–SiC (nanoparticle)–Si3N4 (whisker) composites, J. Mater. Res., 2000, vol. 15, no. 2, pp. 364–368.

    Article  Google Scholar 

  4. Martynenko, V.M. and Borovinskaya, I.P. Thermodynamic analysis of silicon carbide synthesis under a combustion regime, Proc. 3rd All-Union Conference on the Technology of Combustion, Chernogolovka: DICP AC USSR, 1978, pp. 180–181.

  5. Pampuch, R., Stobierski, L., Liz, J., and Raczka, M., Solid combustion synthesis of β-SiC powder, Mater. Res. Bull., 1987, vol. 22, pp. 1225–1231.

    Article  CAS  Google Scholar 

  6. Kharatyan, S.L. and Nersisyan, H.H., Combustion synthesis of silicon carbide under oxidative activation conditions, Int. J. Self-Propag. High-Temp. Synth., 1994, vol. 3, no. 1, pp. 17–25.

    CAS  Google Scholar 

  7. Mukasyan, A.S., Martinenko, V.M., Merzhanov, A.G., Borovinskaya, I.P., and Blinov, M.Yu., Mechanism and principles of silicon combustion in nitrogen, Combust., Explos., Shock Waves, 1986, vol. 22, no. 5, pp. 534–540.

    Article  Google Scholar 

  8. Martynenko, V.V., Self-propagating high temperature synthesis of silicon carbide, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Chernogolovka: Institute of Physical Chemistry USSR Acad. Sci., 1984.

  9. Yamada, O., Hirao, K., Koizumi, M., and Miyamoto, Y., Combustion synthesis of silicon carbide in nitrogen atmosphere, J. Am. Ceram. Soc., 1989, vol. 72, no. 9, pp. 1735–1738.

    Article  CAS  Google Scholar 

  10. Agrafiotis, Ch.C., Lis, J., Puszynski, J.A., and Hlavacek, V., Combustion synthesis of silicon carbide in nitrogen atmosphere, J. Am. Ceram. Soc., 1989, vol. 72, no. 9, pp. 1735–1738.

    Article  Google Scholar 

  11. Kata, D., Lis, J., Pampuch, R., and Stobierski, L., Preparation of fine powders in the Si–C–N system using SHS method, Int. J. Self-Propag. High-Temp. Synth., 1998, vol. 7, no. 4, pp. 475–487.

    CAS  Google Scholar 

  12. Nersisyan, G.A., Nikogosov, V.N., Kharatyan, S.L., and Merzhanov, A.G., Chemical transformation mechanism and combustion regimes in the system silicon–carbon–fluoroplast, Combust., Explos., Shock Waves, 1991, vol. 27, no. 6, pp. 729–724.

    Google Scholar 

  13. Nersisyan, H.H. and Kharatyan, S.L., Combustion of carbide systems under the conditions of chemical stimulation, Int. J. Self-Propag. High-Temp. Synth., 1995, vol. 4, no. 2, pp. 159–170.

    CAS  Google Scholar 

  14. Huczko, A., Osica, M., Rutkowska, A., Bystrzejewski, M., Lange H., and Cudziło, S., A self-assembly SHS approach to form silicon carbide nanofibers, J. Phys.: Condens. Matter, 2007, vol. 19, pp. 1–10.

    Google Scholar 

  15. Danelska, A., Gierlotka, S., Stelmakh, S., and Soszynski, M., Post-synthesis treatment of silicon carbide nanowires obtained in combustion synthesis, Mater. Sci. Semicond. Process., 2016, vol. 42, pp. 326–333.

    Article  CAS  Google Scholar 

  16. Real, C., Alcal, D., and M. Criado, J., Synthesis of silicon carbide of silica gel by means of the whiskers from carbothermal reduction constant rate thermal analysis (CRTA) method, Solid State Ionics, 1997, vol. 95, pp. 29–32.

    Article  CAS  Google Scholar 

  17. Guangyi Yang, Renbing Wu, Jianjun Chen, Yi Pan, Rui Zhai, Lingling Wu, and Jing Lin, Growth of SiC nanowires-nanorods using a Fe–Si solution method, Nanotechnology, 2007, vol. 18, no. 15, p. 155601.

    Article  Google Scholar 

  18. Ahn, H.S. and Choi, D.J., Fabrication of silicon carbide whiskers and whisker-containing composite coatings without using a metallic catalyst, Surf. Coat. Technol., 2002, vol. 154, nos. 2–3, pp. 276–281.

    Article  CAS  Google Scholar 

  19. Fu, Q.-G., Li, H.J., Shi, X.H., Li, K.Z., Wei, J., and Hu, Z.B., Synthesis of silicon carbide by CVD without using a metallic catalyst, Mater. Chem. Phys., 2006, vol. 100, pp. 108–111.

    Article  CAS  Google Scholar 

  20. Salinas, A., Altecor, A., Lizcano, M., and Lozano, K., Production of b-silicon carbide nanofibers using the forcespinning method, J. Ceram. Sci. Technol., 2016, vol. 07, no. 03, pp. 229–234. http://www.ceramic-science.com. https://doi.org/10.4416/JCST2016-00026

    Article  Google Scholar 

  21. Zhengfang, X., Jiaxi, N., and Zhaohui, C., Synthesis and characterization of molybdenum-modified polycarbosilane for SiC(Mo) ceramics, J. Appl. Polym. Sci., 2012, vol. 128, pp. 1834–1841.

    Google Scholar 

  22. Patel, N., Kawai, R., and Oya, A., Preparation of silicon carbide nanofibers by use of polymer blend technique, J. Mater. Sci., 2004, vol. 39, pp. 691–693.

    Article  CAS  Google Scholar 

  23. Fallahian, S.R., Karamian, E., and Monsh, A., SEM and TEM studies of β-SiC nano-whiskers microstructures produced at different temperatures, Ceram. Mater., 2011, vol. 63, no. 2, pp. 256–260.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Zakorzhevsky, V. E. Loryan or T. G. Akopdzhanyan.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakorzhevsky, V.V., Loryan, V.E. & Akopdzhanyan, T.G. Self-Propagating High-Temperature Synthesis of Silicon Carbide Nanofibers. Russ. J. Non-ferrous Metals 61, 675–679 (2020). https://doi.org/10.3103/S106782122006022X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106782122006022X

Keywords:

Navigation