Skip to main content
Log in

Optimization of Characteristics of Pyrolytic Chromium Carbide Coatings

  • NANOSTRUCTURED MATERIALS AND FUNCTIONAL COATINGS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The optimization of characteristics of pyrolytic chromium carbide coatings (PCCCs) for various fields of industry is discussed. The scope of PCCC application involves the protection of the surface of various details and units made from different materials against corrosion, sticking, high temperatures, and various types of wear. Such versatility of PCCCs is caused in particular by their structural features, which usually represent the superlattice of alternating relatively hard and soft layers, which differ in composition and, accordingly, functional characteristics, such as microhardness or Young modulus. Such a structure at particular periods and layer-thickness ratios corresponds to the maximum figure of merit of the problem of optimal control theory (OCT), which represents the inverse problem stated on the class of solutions of primal problem, which models specific interaction, e.g., abrasive wear. In this case, the primal problem, e.g., indentation description, is an ill-posed inverse problem of mathematical physics, and another optimal strategy is required to solve it. Thus, a hierarchy of optimization algorithms arises and, using it, one can achieve highest functional characteristics of PCCCs. If the primal problem of abrasive wear could not be formalized, a calculation–experimental method developed by the authors, which is also based on OCT, is suggested. The main emphasis is on improving the deposition technology of PCCCs for each specific application using the optimal control theory. In order to obtain a PCCC fulfilling these conditions, it is necessary to consider the physicochemical features of pyrolysis of precursors, as well as the effect of various additives and catalysts on the development of flow process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Razuvaev, G.A., Gribov, B.G., Domrachev, G.A., and Salamatin, B.A., Metalloorganicheskie soedineniya v elektronike (Organometallic Compounds for Electronics), Moscow: Nauka, 1972.

  2. Gribov, B.G., Domrachev, G.A., Zhuk, B.V., Kaverin, B.S., Kozyrkin, B.I., Mel’nikov, V.V., and Suvorova, O.N., Osazhdenie plenok i pokrytii razlozheniem metalloorganicheskikh soedinenii (Films and Coatings Deposition by Organometallic Compounds Decomposition), Moscow: Nauka, 1981.

  3. Ilyin, V.A. and Panarin, A.V., Pyrolytic chromium coating (technology, equipment, properties), Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2011, vol. 13, no. 4 (2), pp. 357–360.

  4. Panarin, A.V., Ilyin, V.A., Salahova, R.K., and Smirnova, T.B., The patterns of pyrolytic chromium carbide coatings’ microstructure, phase and chemical composition formation, Tr. Vseross. Inst. Aviats. Mater., 2015, no. 7, p. 6. Panarin, A.V., Ilyin, V.A., Salahova, R.K., and Smirnova, T.B., Regularities of formation microstructure, phase and chemical composition of pyrolytic chrome-carbide coatings, Tr. Vseross. Inst. Aviats. Mater., 2015, no. 7, p. 6.https://doi.org/10.18577/2307-6046-2015-0-7-6-6

  5. Kostylev, A., Pokrovsky, Y., and Lumpov, A., Advanced chromium carbide coatings on piston rings by CVD: A highly adaptable new method with relatively low cost, Adv. Mater. Processes, 2012, vol. 170, no. 7, pp. 22–26.

    CAS  Google Scholar 

  6. Bryskin, B., Kostylev, A., Pokrovsky, Y., and Lumpov, A., Innovative processing technology of chromium carbide coating to apprise performance of piston rings, SAE Int. J. Mater. Manuf., 2013, vol. 6, no. 2, pp. 131–134. https://doi.org/10.4271/2012-01-2327

    Article  Google Scholar 

  7. Bryskin, B., Kostylev, A., Pokrovsky, Y., and Lumpov, A., CVD technology for preparing wear-resistive chromium carbide coatings of engine components, SAE Int. J. Mater. Manuf., 2014, vol. 7, no. 3, pp. 630–632. https://doi.org/10.4271/2014-01-1020

    Article  Google Scholar 

  8. Vasin, V.A., Krit, B.L., Nevrovskii, V.A., Somov, O.V., and Morozova, N.V., Application of pyrolytic chromium-carbide coatings in friction units of machines, Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 5, pp. 475–479. https://doi.org/10.3103/S1068375516050136

    Article  Google Scholar 

  9. Maury, F., Douard, A., Delclos, S., Samelor, D., and Tendero, C., Multilayer chromium-based coatings grown by atmospheric pressure direct liquid injection CVD, Surf. Coat. Technol., 2009, vol. 204, nos. 6–7, pp. 983–987. https://doi.org/10.1016/j.surfcoat.2009.04.020

    Article  CAS  Google Scholar 

  10. Michau, A., Maury, F., Schuster, F., Nuta, I., Gazal, Y., Boichot, R., and Pons, M., Chromium carbide growth by direct liquid injection chemical vapor deposition in long and narrow tubes, experiments, modeling and simulation, Coatings, 2018, vol. 8, no. 6, pp. 1–19. https://doi.org/10.3390/coatings.8060220

  11. Michau, A., Maury, F., Schuster, F., Boichot, R., Pons, M., and Monsifrot, E., Chromium carbide growth at low temperature by a highly efficient DLI-MOCVD process in effluent recycling mode, Surf. Coat. Technol., 2017, vol. 332, pp. 96–104. https://doi.org/10.1016/j.surfcoat.2017.06.077

    Article  CAS  Google Scholar 

  12. Michau, A., Maury, F., Schuster, F., Boichot, R., and Pons, M., Evidence for a Cr metastable phase as a tracer in DLI-MOCVD chromium hard coatings usable in high temperature environment, Appl. Surf. Sci., 2017, vol. 422, pp. 198–206. https://doi.org/10.1016/j.apsusc.2017.05.253

    Article  CAS  Google Scholar 

  13. Michau, A., Maury, F., Schuster, F., Lomello, F., Brachet, J.-C., Rouesne, E., Le Saux, M., Boichot, R., and Pons, M., High-temperature oxidation resistance of chromium-based coatings deposited by DLI-MOCVD for enhanced protection of the inner surface of long tubes, Surf. Coat. Technol., 2018, vol. 349, pp. 1048–1057. https://doi.org/10.1016/j.surfcoat.2018.05.088

    Article  CAS  Google Scholar 

  14. Musil, J., Hard and superhard nanocomposite coatings, Surf. Coat. Technol., 2000, vol. 125, nos. 1–3, pp. 322–330. https://doi.org/10.1016/S0257-8972(99)00586-1

    Article  CAS  Google Scholar 

  15. Pogrebnyak, A.D., Lozovan, A.A., Kirik, G.V., Shchitov, N.N., Stadnik, A.D., and Bratushka, S.N., Struktura i svoistva nanokompozitnykh, gibridnykh i polimernykh pokrytii (The Structure and Properties of Nanocomposite, Hybrid and Polymer Coatings), Moscow: LIBROKOM, 2011.

  16. Knotek, O., Löffler, F., and Krämer, G., in Handbook of Hard Coatings: Deposition Technologies, Properties and Applications, Bunshah, R.F., McGuire, G.E., and Rossnagel, S.M., Eds., New York: William Andrew, 2000.

    Google Scholar 

  17. Holleck, H. and Schulz, H., Advanced layer material constitution, Thin Solid Films, 1987, vol. 153, pp. 11–17. https://doi.org/10.1016/0040-6090(87)90165-9

    Article  CAS  Google Scholar 

  18. Martinez, E., Romero, J., Lousa, A., and Esteve, J., Mechanical strengthening in nanometric CrN/Cr multilayers measured by nanoindentation, J. Phys. D: Appl. Phys., 2002, vol. 35, no. 15, pp. 1880–1883. https://doi.org/10.1088/0022-3727/35/15/311

    Article  CAS  Google Scholar 

  19. Martinez, E., Romero, J., Lousa, A., and Esteve, J., Wear behavior of nanometric CrN/Cr multilayers, Surf. Coat. Technol., 2003, vols. 163–164, pp. 571–577. https://doi.org/10.1016/S0257-8972(02)00664-3

    Article  Google Scholar 

  20. Park, J.K. and Baik, Y.J., The crystalline structure, hardness and thermal stability of AlN/CrN superlattice coating prepared by D.C. magnetron sputtering, Surf. Coat. Technol., 2005, vol. 200, pp. 1519–1523. https://doi.org/10.1016/j.surfcoat.2005.08.099

    Article  CAS  Google Scholar 

  21. Helmersson, U., Todorova, S., Barnett, S.A., Sundgren, J.E., Markert, L.C., and Greene, J.E., Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness, J. Appl. Phys., 1987, vol. 62, pp. 481–484. https://doi.org/10.1063/1.339770

    Article  CAS  Google Scholar 

  22. Schitov, N.N., Optical metamaterials - the reality of today and the routine of tomorrow, Fotonika, 2019, vol. 13, no. 8, pp. 750–759. https://doi.org/10.22184/1993-7296

    Article  Google Scholar 

  23. Lozovan, A.A. and Schitov, N.N., The optimization of vacuum nano-gradient coatings elaboration process, Tekhnol. Mashinostr., 2007, no. 9, pp. 36–40.

  24. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., Matematicheskaya teoriya optimal’nykh protsessov (The Mathematical Theory of Optimal Processes), Moscow: Nauka, 1983.

  25. Aizikovich, S.M., Aleksandrov, V.M., Belokon’, A.V., Krenev, L.I., and Trubchik, I.S., Kontaktnye zadachi teorii uprugosti dlya neodnorodnykh sred (Contact Problems of the Elasticity Theory for Non-Uniform Media), Moscow: Fizmatlit, 2006.

  26. Schitov, N.N., The experiment-calculated method of the ordered structure coatings optimal parameters determination, Mater. Sci. Eng., A, 2017, vol. 7, nos. 7–8, pp. 216–227. https://doi.org/10.17265/2161-6213/2017.7-8.006

    Article  CAS  Google Scholar 

  27. Krokhmal’, S.A., Zueva, T.N. and Sushchaya, A.A., Structure and properties of multilayer chromium carbide coatings deposited by MOCVD method from technical product HOZH “BARKHOS”, Zh. Fiz. Inzh. Poverkhn., 2016, vol. 1, no. 2, pp. 194–206.

    Google Scholar 

  28. Boiko, S.V., The elaboration of pyrolytic chromium coatings deposition technology in the ammonia atmosphere, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Moscow: Moscow Automobile and Road Construction State Technical Inst., 1990.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. N. Schitov or A. A. Lozovan.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Muravev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schitov, N.N., Lozovan, A.A. Optimization of Characteristics of Pyrolytic Chromium Carbide Coatings. Russ. J. Non-ferrous Metals 61, 745–752 (2020). https://doi.org/10.3103/S106782122006019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106782122006019X

Keywords:

Navigation