Skip to main content
Log in

Positron Annihilation Studies of Modified Aluminide Coatings on Nickel and Nickel Superalloy

  • METALLURGY OF NONFERROUS METALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Aluminide coatings deposited by CVD method on CMSX-4 superalloy, modified by palladium and zirconium or hafnium as well as non-modified and palladium modified ones on pure nickel have been studied using positron annihilation spectroscopy. The positron lifetime values and the positron effective diffusion length in the coatings studied point out trapping of positrons in defects associated with dislocations of high density. Palladium used for modification of the aluminide coatings substitutes nickel in the β-NiAl phase. This gives rise to the increase in the positron lifetime indicating a higher number of open volume defects in the crystal lattice. Additional modification of the aluminide coating on CMSX-4 nickel superalloy with zirconium or hafnium causes only slight changes in the positron lifetime which may be related to the differences in location of precipitates in the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Miracle, D.B., Overview No. 104 The physical and mechanical properties of NiAl, Acta Metall. Mater., 1993, vol. 41, no. 3, pp. 649–684.

    Article  CAS  Google Scholar 

  2. Pint, B.A., The role of chemical composition on the oxidation performance of aluminide coatings, Surf. Coat. Technol., 2004, vols. 188–189, pp. 71–78.

    Article  Google Scholar 

  3. Zagula-Yavorska, M., Sieniawski, J., and Gancarczyk, T., Some properties of platinum and palladium modified aluminide coatings deposited by CVD method on nickel-base superalloys, Arch. Metall. Mater., 2012, vol. 57, no. 2, pp. 503–509.

    Article  CAS  Google Scholar 

  4. Warnes, B.M., Reactive element modified chemical vapor deposition low activity platinum aluminide coatings, Surf. Coat. Technol., 2001, vols. 146–147, pp. 7–12.

    Article  Google Scholar 

  5. Guo, H., Wang, D., Peng, H., Gong, S., and Xu, H., Effect of Sm, Gd, Yb, Sc and Nd as reactive elements on oxidation behavior of β-NiAl at 1200°C, Corros. Sci., 2004, vol. 78, pp. 369–377.

    Article  Google Scholar 

  6. Pint, B.A., Haynes, J.A., and Besman, T.M., Effect of Hf and Y alloy additions on aluminide coating performance, Surf. Coat. Technol., 2010, vol. 204, no. 20, pp. 3287–3293.

    Article  CAS  Google Scholar 

  7. Li, D., Guo, H., Wang, D., Zhang, T., Gong, S., and Hubin, X., Cyclic oxidation of β-NiAl with various reactive element dopants at 1200°C, Corros. Sci., 2013, vol. 66, pp. 125–135.

    Article  CAS  Google Scholar 

  8. Krause-Rehberg, R. and Leipner, H.S., Positron Annihilation in Semiconductors, vol. 127 of Springer Series in Solid-State Sciences, Berlin, Heidelberg: Springer, 1999.

  9. Puska, M.J. and Nieminen, R.M., Theory of positrons in solids and on solid surfaces, Rev. Mod. Phys., 1994, vol. 66, pp. 841–897.

    Article  CAS  Google Scholar 

  10. Positron Beams and Their Application, Coleman, P., Ed., Singapore: World Scientific, 2000.

    Google Scholar 

  11. Romanowska, J., Morgiel, J., Kolek, Ł., Kwolek, P., and Zagula-Yavorska, M., Effect of Pd and Hf co-doping of aluminide coatings on pure nickel and CMSX-4 nickel superalloy, Arch. Civ. Mech. Eng., 2018, vol. 18, no. 4, pp. 1421–1429.

    Article  Google Scholar 

  12. Kansy, J., Microcomputer program for analysis of positron annihilation lifetime spectra, Nucl. Instrum. Methods Phys. Res., Sect. A, 1996, vol. 374, pp. 235–244.

    CAS  Google Scholar 

  13. Horodek, P., Kobets, A.G., Meshkov, I.N., Sidorin, A.A., and Orlov, O.S., Slow positron beam at the JINR, Dubna, Nukleonika, 2015, vol. 60, pp. 725–728.

    Article  CAS  Google Scholar 

  14. Dryzek, J., The S-Parameter Evaluation. https:// www.ifj.edu.pl/private/jdryzek/page_r18.html. Accessed August 24, 2018.

  15. Romanowska, J., Aluminum diffusion in aluminide coatings deposited by the CVD method on pure nickel, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2014, vol. 44, pp. 114–118.

    Article  CAS  Google Scholar 

  16. Romanowska, J., Zagula-Yavorska, M., Kolek, Ł., and Bassir, D., Oxidation resistance of modified aluminide coatings, MATEC Web Conf., 2019, vol. 253, article no. 03006.

  17. Zagula-Yavorska, M. and Sieniawski, J., Cyclic oxidation of palladium modified and nonmodified aluminide coatings deposited on nickel base superalloys, Arch. Civ. Mech. Eng., 2018, vol. 18, no. 1, pp. 130–139.

    Article  Google Scholar 

  18. Siemek, K., LYS-1 Code. https://ifj.edu.pl/private/jdryzek/page_r22.html. Accessed August 24, 2018.

  19. Dryzek, J. and Siemek, K., The multi-scattering model for calculations of positron spatial distribution in the multilayer stacks, useful for conventional positron measurements, J. Appl. Phys., 2013, vol. 114, p. 074904.

    Article  Google Scholar 

  20. Puff, W., Logar, B., and Balogh, A.G., An investigation of vacancy-like defects in stoichiometric NiAl by means of positron annihilation measurements, Acta Mater., 1999, vol. 47, no. 1, pp. 101–109.

    Article  CAS  Google Scholar 

  21. Bradley, A.J. and Taylor, A., An X-ray analysis of the nickel–aluminum system, Proc. R. Soc. A, 1937, vol. 159, pp. 56–63.

    CAS  Google Scholar 

  22. Romanowska, J., Dryzek, E., Morgiel, J., Siemek, K., Kolek, Ł., and Zagula-Yavorska, M., Microstructure and positron lifetimes of zirconium modified aluminide coatings, Arch. Civ. Mech. Eng., 2018, vol. 18, no. 4, pp. 1150–1155.

    Article  Google Scholar 

  23. Lamlese, P., Steinmetz, P., and Steinmetz, J., Palladium-modified aluminide coatings: mechanisms of formation, J. Electrochem. Soc., 1995, vol. 142, no. 2, pp. 497–506.

    Article  Google Scholar 

  24. Kogachi, M., Tanahashi, T., Shirai, Y., and Yamaguchi, M., Determination of vacancy concentration and defect structure in the B2 type NiAl β-phase alloys, Scr. Mater., 1996, vol. 34, no. 2, pp. 243–248.

    Article  CAS  Google Scholar 

  25. Dryzek, J., The exact solution of the time dependent positron diffusion equation valid for the case of pulsed beam experiments, Nucl. Instrum. Methods Phys. Res., Sect. B, 2002, vol. 196, nos. 1–2, pp. 186–193.

    CAS  Google Scholar 

  26. van Veen, A., Schut, H., de Vries, J., Hakvoort, R.A., and Ijmpa, W.R., Positron beams for solids and surfaces, AIP Conf. Proc., 1990, vol. 218, pp. 171–196.

    Article  Google Scholar 

  27. Dryzek, J. and Horodek, P., GEANT4 simulation of slow positron beam implantation profiles, Nucl. Instrum. Methods Phys. Res., Sect. B, 2008, vol. 266, no. 18, pp. 4000–4009.

    CAS  Google Scholar 

  28. Romanowska, J., Morgiel, J., Zagula-Yavorska, M., and Sieniawski, J., Nanoparticles in hafnium-doped aluminide coatings, Mater. Lett., 2015, vol. 145, pp. 162–166.

    Article  CAS  Google Scholar 

  29. Liu, J., Weng, H., Chen, X., Du, H., and Ye, B., Characterization of Ni-rich intermetallic compound Ni3Al films with slow positron beam, Mod. Phys. Lett. B, 2009, vol. 23, no. 26, pp. 3097–3106.

    Article  CAS  Google Scholar 

  30. Krause-Rehberg, R., Bondarenko, V., Thiele, E., Klemm, R., and Schell, N., Determination of absolute defect concentrations for saturated positron trapping-deformed polycrystalline Ni as a case study, Nucl. Instrum. Methods Phys. Res., Sect. B, 2005, vol. 240, pp. 719–725.

    CAS  Google Scholar 

Download references

Funding

This research was supported by the National Science Centre, Poland (NCN), project no. 2015/19/B/ST8/01645.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Skowron.

Ethics declarations

The author declares no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dryzek, E., Romanowska, J. & Skowron, K. Positron Annihilation Studies of Modified Aluminide Coatings on Nickel and Nickel Superalloy. Russ. J. Non-ferrous Metals 61, 608–614 (2020). https://doi.org/10.3103/S1067821220060061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220060061

Keywords:

Navigation