Skip to main content
Log in

Mechanical Properties and Heat Resistance of Ta–Zr–Si–B–C–N Coatings Obtained upon the Magnetron Sputtering of the TaZrSiB Target in Ar, N2, and C2H4 Atmosphere

  • NANOSTRUCTURED MATERIALS AND FUNCTIONAL COATINGS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Ta–Zr–Si–B–C–N coatings are obtained by magnetron sputtering in argon, nitrogen, and ethylene atmosphere. The structure of the coatings is analyzed by scanning electron microscopy and energy dispersive and X-ray phase analysis. The mechanical properties of the coatings are determined by nanoindentation. Tribological tests are performed using a Tribometer automated testing machine under a load of 1 N. Wear tracks are analyzed using an optical profile meter. The heat resistance of the coatings is studied at 1000°C. It is established that the coatings obtained in argon are characterized by the highest hardness (30 GPa) and elastic recovery (79%). Moreover, they can be resistant against oxidation up to 1000°C inclusively, which is attributed to the protective film formed on their surface comprised of silicon and tantalum oxides. Reactive coatings obtained in nitrogen are characterized by lower heat resistance in comparison with nonreactive coatings, being completely oxidized by 1000°C. However, they have a low coefficient of friction: less than 0.15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Nose, M., Kawabata, T., Watanuki, T., Ueda, S., Fujii, K., Matsuda, K., and Ikeno, S., Mechanical properties and oxidation resistance of CrAlN/BN nanocomposite coatings prepared by reactive dc and rf cosputtering, Surf. Coat. Technol., 2011, vol. 205, pp. S33–S37.

    Article  CAS  Google Scholar 

  2. Paternoster, C., Fabrizi, A., Cecchini, R., Spigarelli, S., Kiryukhantsev-Korneev, Ph.V., and Sheveyko, A., Thermal evolution and mechanical properties of hard Ti–Cr–B–N and Ti–Al–Si–B–N coatings, Surf. Coat. Technol., 2008, vol. 203, pp. 736–740.

    Article  CAS  Google Scholar 

  3. Hultman, L., Thermal stability of nitride thin films, Vacuum, 2000, vol. 57, pp. 1–30.

    Article  CAS  Google Scholar 

  4. Musil, J., Daniel, R., Soldán, J., and Zeman, P., Properties of reactively sputtered W–Si–N films, Surf. Coat. Technol., 2006, vol. 200, pp. 3886–3895.

    Article  CAS  Google Scholar 

  5. Lu-Steffes, O.J., Sakidja, R., Bero, J., and Perepezko, J.H., Multicomponent coating for enhanced oxidation resistance of tungsten, Surf. Coat. Technol., 2012, vol. 207, pp. 614–619.

    Article  CAS  Google Scholar 

  6. Kiryukhantsev-Korneev, F.V., Sheveiko, A.N., Komarov, V.A., Blanter, M.S., Skryleva, E.A., Shirmanov, N.A., Levashov, E.A., and Shtansky, D.V., Nanostructured Ti–Cr–B–N and Ti–Cr–Si–C–N coatings for hard-alloy cutting tools, Russ. J. Non-Ferrous Met., 2011, vol. 52, pp. 311–318.

    Article  Google Scholar 

  7. Shtansky, D.V., Kiryukhantsev-Korneev, Ph.V., Sheveyko, A.N., Mavrin, B.N., Rojas, C., Fernandez, A., and Levashov, E.A., Comparative investigation of TiAlC(N), TiCrAlC(N), and CrAlC(N) coatings deposited by sputtering of MAX-phase Ti2 – xCrxAlC targets, Surf. Coat. Technol., 2009, vol. 203, pp. 3595–3609.

    Article  CAS  Google Scholar 

  8. Shtansky, D.V., Kuptsov, K.A., Kiryukhantsev-Korneev, Ph.V., Sheveiko, A.N., Fernandez, A., and Petrzhik, M.I., Comparative investigation of Al- and Cr-doped TiSiCN coatings, Surf. Coat. Technol., 2011, vol. 205, pp. 4640–4648.

    Article  CAS  Google Scholar 

  9. Kuptsov, K.A., Kiryukhantsev-Korneev, Ph.V., Sheveyko, A.N., and Shtansky, D.V., Surface modification of TiAlSiCN coatings to improve oxidation protection, Appl. Surf. Sci., 2015, vol. 347, pp. 713–718.

    Article  CAS  Google Scholar 

  10. Musil, J. and Zeman, P., Hard a-Si3N4/MeNx nanocomposite coatings with high thermal stability and high oxidation resistance, Solid State Phenom., 2007, vol. 127, pp. 31–36.

    Article  CAS  Google Scholar 

  11. Kiryukhantsev-Korneev, Ph.V., Pierson, J.F., Kuptsov, K.A., and Shtansky, D.V., Hard Cr–Al–Si–B–(N) coatings deposited by reactive and non-reactive magnetron sputtering of CrAlSiB target, Appl. Surf. Sci., 2014, vol. 314, pp. 104–111.

    Article  CAS  Google Scholar 

  12. Kiryukhantsev-Korneev, Ph.V., Lemesheva, M.V., Shvyndina, N.V., Levashov, E.A., and Potanin, A.Yu., Structure, mechanical properties, and oxidation resistance of ZrB2, ZrSiB, and ZrSiB/SiBC coatings, Prot. Met. Phys. Chem. Surf., 2018, vol. 54, pp. 1147–1156.

    Article  CAS  Google Scholar 

  13. Kiryukhantsev-Korneev, Ph.V., Sheveyko, A.N., Levashov, E.A., and Shtansky, D.V., Investigation of the Si–B–C–N coatings deposited by magnetron sputtering of SiBC targets, Russ. J. Non-Ferrous Met., 2015, vol. 56, pp. 540–547.

    Article  Google Scholar 

  14. Vlcek, J., Hreben, S., Kalas, J., Capek, J., Zeman, P., and Cerstvy, R., Magnetron sputtered Si–B–C–N films with high oxidation resistance and thermal stability in air at temperatures above 1500°C, J. Vac. Sci. Technol., A, 2008, vol. 26, pp. 1101–1108.

    Article  CAS  Google Scholar 

  15. Zeman, P., Čapek, J., Čerstvý, R., and Vlček, J., Thermal stability of magnetron sputtered Si–B–C–N materials at temperatures up to 1700°C, Thin Solid Films, 2010, vol. 519, pp. 306–311.

    Article  CAS  Google Scholar 

  16. He, J., Zhang, M., Jiang, J., Vlček, J., Zeman, P., Steidl, P., and Meletis, E.L., Microstructure characterization of high-temperature, oxidation-resistant Si–B–C–N films, Thin Solid Films, 2013, vol. 542, pp. 167–173.

    Article  CAS  Google Scholar 

  17. Zhestkov, B.E. and Terent’eva, V.S., Multifunctional coating MAI D5 intended for the protection of refractory materials, Russ. Metall. (Engl. Transl.), 2010, vol. 1, pp. 33–40.

  18. Kiryukhantsev-Korneev, Ph.V., Iatsyuk, I.V., Shvindina, N.V., Levashov, E.A., and Shtansky, D.V., Comparative investigation of structure, mechanical properties, and oxidation resistance of Mo–Si–B and Mo–Al–Si–B coatings, Corros. Sci., 2017, vol. 123, pp. 319–327.

    Article  CAS  Google Scholar 

  19. Shon, I.-J., Ko, I.-Y., Chae, S.-M., and Na, K., Rapid consolidation of nanostructured TaSi2 from mechanochemically synthesized powder by high frequency induction heated sintering, Ceram. Int., 2011, vol. 37, pp. 679–682.

    Article  CAS  Google Scholar 

  20. Li, X., Feng, J., Jiang, Y., Lin, H., and Feng, J., Preparation and properties of TaSi2–MoSi2–ZrO2-borosilicate glass coating on porous SiCO ceramic composites for thermal protection, Ceram. Int., 2018, vol. 44, pp. 19143–19150.

    Article  CAS  Google Scholar 

  21. Xu, J., Zhang, S.K., Lu, X.L., Jiang, S., Munroe, P., and Xie, Z.-H., Effect of Al alloying on cavitation erosion behavior of TaSi2 nanocrystalline coatings, Ultrason. Sonochem., 2019, vol. 59, article no. 104742.

    Article  CAS  Google Scholar 

  22. Peng, F. and Speyer, R.F., Oxidation resistance of fully dense ZrB2 with SiC, TaB2, and TaSi2 additives, J. Am. Ceram. Soc., 2008, vol. 91, pp. 1489–1494.

    Article  CAS  Google Scholar 

  23. Mansour, A.N., Effect of temperature on microstructure and electrical properties of TaSi2 thin films grown on Si substrates, Vacuum, 2011, vol. 85, pp. 667–671.

    Article  CAS  Google Scholar 

  24. Niu, Y., Huang, L., Zhai, C., Zeng, Y., Zheng, X., and Ding, C., Microstructure and thermal stability of TaSi2 coating fabricated by vacuum plasma spray, Surf. Coat. Technol., 2015, vol. 279, pp. 1–8.

    Article  CAS  Google Scholar 

  25. Schultes, G., Schmitt, M., Goettel, D., and Freitag-Weber, O., Strain sensitivity of TiB2, TiSi2, TaSi2 and WSi2 thin films as possible candidates for high temperature strain gauges, Sens. Actuators, A, 2006, vol. 126, pp. 287–291.

    Article  CAS  Google Scholar 

  26. Inui, H., Fujii, A., Hashimoto, T., Tanaka, K., Yamaguchi, M., and Ishizuk, K., Defect structures in TaSi2 thin films produced by co-sputtering, Acta Mater., 2003, vol. 51, pp. 2285–2296.

    Article  CAS  Google Scholar 

  27. Liu, F., Li, H., Gu, S., Yao, X., and Fu, Q., Ablation behavior and thermal protection performance of TaSi2 coating for SiC coated carbon/carbon composites, Ceram. Int., 2019, vol. 45, pp. 3256–3262.

    Article  CAS  Google Scholar 

  28. Chung, C.K. and Chen, T.S., Effect of Si/Ta and nitrogen ratios on the thermal stability of Ta–Si–N thin films, Microelectron. Eng., 2010, vol. 87, pp. 129–134.

    Article  CAS  Google Scholar 

  29. Chung, C.K., Chen, T.S., Peng, C.C., and Wu, B.H., Thermal stability of Ta–Si–N nanocomposite thin films at different nitrogen flow ratios, Surf. Coat. Technol., 2006, vol. 201, pp. 3947–3952.

    Article  CAS  Google Scholar 

  30. Fang, J.-S., Su, W.-J., Huang, M.-S., Chiu, C.-F., and Chin, T.-S., Characteristics of plasma-treated amorphous Ta–Si–C film as a diffusion barrier for copper metallization, J. Electron. Mater., 2014, vol. 43, pp. 212–218.

    Article  CAS  Google Scholar 

  31. Zeman, P., Musil, J., and Daniel, R., High-temperature oxidation resistance of Ta–Si–N films with a high Si content, Surf. Coat. Technol., 2006, vol. 200, pp. 4091–4096.

    Article  CAS  Google Scholar 

  32. Shtansky, D.V., Sheveyko, A.N., Sorokin, D.I., Lev, L.C., Mavrin, B.N., and Kiryukhantsev-Korneev, Ph.V., Show more structure and properties of multi-component and multilayer TiCrBN/WSex coatings deposited by sputtering of TiCrB and WSe2 targets, Surf. Coat. Technol., 2008, vol. 202, pp. 5953–5961.

    Article  CAS  Google Scholar 

  33. Kiryukhantsev-Korneev, Ph.V., Sheveyko, A.N., Lemesheva, M., Rupasov, S.I., and Levashov, E.A., Investigation of Si–B–C–N coatings produced by ion sputtering of SiBC target, Prot. Met. Phys. Chem. Surf., 2017, vol. 53, pp. 873–878.

    Article  CAS  Google Scholar 

  34. Yoon, J.-K., Kim, G.-H., Kim, H.-S., Shon, I.-J., Kim, J.-S., and Doh, J.-M., Microstructure and oxidation behavior of in situ formed TaSi2–Si3N4 nanocomposite coating grown on Ta substrate, Intermetallics, 2008, vol. 16, pp. 1263–1272.

    Article  CAS  Google Scholar 

  35. Musil, J., Zeman, P., and Baroch, P., Hard nanocomposite coatings, in Comprehensive Materials Processing, Elsevier, 2014, vol. 4, pp. 325–353.

    Google Scholar 

  36. Ren, Y., Qian, Y., Xu, J., Zuo, J., and Lia, M., Ultra-high temperature oxidation resistance of ZrB2–20SiC coating with TaSi2 addition on siliconized graphite, Ceram. Int., 2019, vol. 45, pp. 15366–15374.

    Article  CAS  Google Scholar 

  37. Shtansky, D.V., Lyasotsky, I.V., D’yakonova, N.B., Kiryukhantsev-Korneev, F.V., Kulinich, S.A., Levashov, E.A., and Moore, J.J., Comparative investigation of Ti–Si–N films magnetron sputtered using Ti5Si3 + Ti and Ti5Si3 + TiN targets, Surf. Coat. Technol., 2004, vol. 182, pp. 204–214.

    Article  CAS  Google Scholar 

  38. Bondarev, A.V., Vorotilo, S., Shchetinin, I.V., Levashov, E.A., and Shtansky, D.V., Fabrication of Ta–Si–C targets and their utilization for deposition of low friction wear resistant nanocomposite Si–Ta–C–(N) coatings intended for wide temperature range tribological applications, Surf. Coat. Technol., 2019, vol. 359, pp. 342–353.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank MISiS members P. Loginov, N.V. Shvyndina, and M.I. Petrzhik for their assistance in carrying out X-ray phase analysis, SEM, and nanoindentation measurements.

Funding

This work was supported by the Russian Science Foundation, project no. 19-19-00117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. V. Kiryukhantsev-Korneev.

Additional information

Translated by I. Moshkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiryukhantsev-Korneev, P.V., Sytchenko, A.D., Levashov, E.A. et al. Mechanical Properties and Heat Resistance of Ta–Zr–Si–B–C–N Coatings Obtained upon the Magnetron Sputtering of the TaZrSiB Target in Ar, N2, and C2H4 Atmosphere. Russ. J. Non-ferrous Metals 61, 732–738 (2020). https://doi.org/10.3103/S1067821220060103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220060103

Keywords:

Navigation