Skip to main content
Log in

On Continuity of Buffon Functionals in the Space of Planes in \(\boldsymbol{\mathbb{R}}^{\mathbf{3}}\)

  • Published:
Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) Aims and scope Submit manuscript

Abstract

The paper considers measures in the space \(\mathbb{E}\) of planes in \(\mathbb{R}^{3}\), and combinatorial decompositions for their values on ‘‘Buffon sets’’ in \(\mathbb{E}\). These decompositions, written in terms of a ‘‘wedge function’’ depending on the measure, have been known since long in Combinatorial Integral Geometry, yet their explicit expressions have been well established only for ‘‘non-degenerate’’ Buffon sets. Theorem 1 removes this gap and presents a decomposition algorithm valid with no similar restriction. Theorem 2 presents a result in a direction converse to Theorem 1. Starting from the decomposition algorithm, a combinatorial valuation \(\Psi_{F}\) is defined that depends on ‘‘general’’ continuous additive wedge function \(F(W)\). The question is: when \(\Psi_{F}\) becomes a measure in the space \(\mathbb{E}\)? Theorem 2 points at special ‘‘tetrahedral inequalities’’, the analogues of triangular inequalities of the planar theory. If \(\Psi_{F}\) satisfies these ‘‘tetrahedral inequalities’’, then \(\Psi_{F}\) becomes a measure and the corresponding \(F(W)\) is called a ‘‘wedge metric’’ (to stress the connection of the paper’s topic with Hilbert’s Fourth Problem).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

REFERENCES

  1. R. Alexander, ‘‘Book review on ‘Combinatorial integral geometry with applications to mathematical stereology,’’ Bull. (New Ser.) Am. Math. Soc. 10, 318–321 (1984).

    Article  Google Scholar 

  2. R. Alexander, ‘‘Planes for which the lines are the shortest paths between points,’’ Ill. J. Math. 22, 177–190 (1978). https://doi.org/10.1215/ijm/1256048729

  3. ‘‘The solution of the Buffon–Sylvester problem in R3,’’ Z. Wahrscheinlichkeitstheorie Verw. Geb. 27, 53–74 (1973). https://doi.org/10.1007/BF00736008

  4. R. V. Ambartzumian, ‘‘A note on pseudometrics on the plane,’’ Z. Wahrscheinlichkeitstheorie Verw. Geb. 37, 145–155 (1976). https://doi.org/10.1007/BF00536777

    Article  MathSciNet  MATH  Google Scholar 

  5. R. V. Ambartzumian, ‘‘Stochastic Geometry from the standpoint of integral geometry,’’ Adv. Appl. Prob. 9, 792–823 (1977).https://doi.org/10.2307/1426701

    Article  MathSciNet  MATH  Google Scholar 

  6. R. V. Ambartzumian, Combinatorial Integral Geometry with Applications to Mathematical Stereology (Wiley, Somerset, NJ, 1982).

  7. R. V. Ambartzumian, ‘‘Combinatorial integral geometry, metrics and zonoids,’’ Acta Appl. Math. 9, 3–27 (1987). https://doi.org/10.1007/BF00580819

    Article  MathSciNet  MATH  Google Scholar 

  8. R. V. Ambartzumian, Factorization Calculus and Geomertic Probability (Cambridge Univ. Press, Cambridge, 1990). https://doi.org/10.1017/CBO9781139086561

  9. R. V. Ambartzumian, ‘‘Parallel X-ray tomography of convex domains as a search problem in two dimensions,’’ J. Contemp. Math. Anal. 48, 23–34 (2013). https://doi.org/10.3103/S1068362313010032.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. V. Ambartzumian, ‘‘Sevan methodologies revisited: random line processes’’, J. Contemp. Math. Anal., 48, 4–22 (2013). https://doi.org/10.3103/S1068362313010020

    Article  MathSciNet  MATH  Google Scholar 

  11. R. H. Aramyan, ‘‘Measures in the space of planes and convex bodies,’’ J. Contemp. Math. Anal. 47, 78–85 (2012). https://doi.org/10.3103/S1068362312020045

    Article  MathSciNet  MATH  Google Scholar 

  12. R. H. Aramyan, ‘‘Reconstruction of measures in the space of planes,’’ Lobachevskii J. Math. 32, 241–246 (2011). https://doi.org/10.1134/S1995080211040044

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Baddeley, ‘‘Combinatorial foundations of stochastic geometry,’’ Proc. London Math. Soc. s3-42, 151–177 (1980). https://doi.org/10.1112/plms/s3-42.1.151

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Busemann, ‘‘Herbert geometries in which the planes minimize area,’’ Ann. Mat. Pura Appl. 55 (4), 171–189 (1961).https://doi.org/10.1007/BF02412083

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Yu. Panina, ‘‘Many-dimensional combinatorial Ambartzumian’s formulae’’, Math. Nachr., 159, 271–277 (1992). https://doi.org/10.1002/mana.19921590118

    Article  MathSciNet  MATH  Google Scholar 

  16. Stochastic Geometry, Ed. by E. F. Harding and D. G. Kendall (Wiley, New York, 1974).

    Google Scholar 

  17. J. C. Álvarez Paiva, ‘‘Hilbert’s fourth problem in two dimensions I,’’ in Mass Selecta: Teaching and Learning Advanced Undergraduate Mathematics, Ed. by S. Katok, A. Sossinsky, and S. Tabachnikov (Amer. Math. Soc., Rhode Island, 2003), pp. 165–183.

    Google Scholar 

  18. L. A. Santalo, Integral Geometry and Geometric Probability (Addison-Wesley, Reading, MA, 1976).

    MATH  Google Scholar 

  19. R. Schneider, ‘‘Crofton measures in projective finsler spaces,’’ in Integral Geometry and Convexity, Ed. by E. L. Grinberg, Sh. li, G. Zhang, and J. Zhou (World Scientific, Singapore, 2006). https://doi.org/10.1142/9789812774644_0006

    Article  MATH  Google Scholar 

  20. Z. I. Szabó, ‘‘Hilbert’s fourth problem, I,’’ Adv. Math. 59, 185–301 (1986). https://doi.org/10.1016/0001-8708(86)90056-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Ambartzumian.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambartzumian, R.V. On Continuity of Buffon Functionals in the Space of Planes in \(\boldsymbol{\mathbb{R}}^{\mathbf{3}}\) . J. Contemp. Mathemat. Anal. 55, 335–343 (2020). https://doi.org/10.3103/S1068362320060035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068362320060035

Keywords:

Navigation