Skip to main content
Log in

On the de Rham Theorem and an Application to the Maxwell–Stokes Type Problem

  • Published:
Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) Aims and scope Submit manuscript

Abstract

In this paper, we derive an \(L^{p}\) version of the de Rham theorem. The key is an \(L^{p}\) version of the Nec̆as inequality. Using this result and the variational method, we show the existence of a solution to the Maxwell–Stokes type system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Amrouche and V. Girault, ‘‘Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension,’’ Czech. Math. J. 44, 109–140 (1994). https://doi.org/10.21136/CMJ.1994.128452

    Article  MathSciNet  Google Scholar 

  2. C. Amrouche and N. E. H. Seloula, ‘‘\(L^{p}\)-theory for vector potentials and Sobolev’s inequalities for vector fields,’’ C. R. Acad. Sci. Paris Ser. 1 349, 529–534 (2011). https://doi.org/10.1016/j.crma.2011.04.008

    Article  Google Scholar 

  3. C. Amrouche and N. H. Seloula, ‘‘\(L^{p}\)-theory for vector potentials and Sobolev’s inequalities for vector fields: application to the Stokes equations with pressure boundary conditions,’’ Math. Models Methods Appl. Sci. 23, 37092 (2013). https://doi.org/10.1142/S0218202512500455

    Article  Google Scholar 

  4. C. Amrouche, P. G. Ciarlet, and C. Mardare, ‘‘On a lemma of Jacques-Louis Lions and its relation to other fundamental results,’’ J. Math. Pure Appl. 104, 207–226 (2015). https://doi.org/10.1016/j.matpur.2014.11.007

    Article  MathSciNet  Google Scholar 

  5. J. Aramaki, ‘‘Variational problem involving operator curl associated with \(p\)-curl system,’’ Turk. J. Math. 42 (3), 949–966 (2018). https://doi.org/10.3906/mat-1606-11

    Article  MathSciNet  Google Scholar 

  6. J. Aramaki, ‘‘A version of the de Rham lemma,’’ East-West J. Math. 20, 180–187 (2018).

    MathSciNet  Google Scholar 

  7. J. Aramaki, ‘‘Existence and regularity of weak solution for a class of systems in a multi-connected domain’’, J. Partial Differ. Eq. 32, 1–19 (2019). https://doi.org/10.4208/jpde.v32.n1.1

    Article  MathSciNet  Google Scholar 

  8. J. Aramaki, ‘‘Applications of a version of the de Rham lemma to the existence theory of a weak solution to the Maxwell–Stokes type equation,’’ Arabian J. Math. 9, 9–18 (2020). https://doi.org/10.1007/s40065-018-0224-6

    Article  MathSciNet  Google Scholar 

  9. A. Azevedo, F. Miranda, and L. Santos, ‘‘Variational and quasivariational inequalities with first order constraints,’’ J. Math. Anal. Appl. 397 (2), 738–756 (2013).https://doi.org/10.1016/j.jmaa.2012.07.033

    Article  MathSciNet  Google Scholar 

  10. F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models (Springer, New York, 2010). https://doi.org/10.1007/978-1-4614-5975-0

  11. L. Cattabriga, ‘‘Su un ploblema al contorno relativo al sistema de equazoni de Stokes,’’ Rend. Sem. Mat. Univ. Padova 31, 308–340 (1961).

    MathSciNet  Google Scholar 

  12. P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications (SIAM, Philadelphia, 2013).

    Google Scholar 

  13. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations (Springer-Verlag, Berlin, 1986). https://doi.org/10.1007/978-3-642-61623-5

  14. B. Kaltenbacher, M. Kaltenbacher, and S. Reitzinger, ‘‘Identification of \(B{-}H\)-curves based on magnetic field computations and multigird methods for ill-posed problems,’’ Eur. J. Appl. Math. 14, 15–38 (2003). https://doi.org/10.1017/S0956792502005089

    Article  Google Scholar 

  15. F. Miranda, J.-F. Rodrigues, and L. Santos, ‘‘On a class of stationary nonllinear Maxwell system,’’ Math. Models Methods Appl. Sci. 19, 1883–1905 (2009). https://doi.org/10.1142/S0218202509003966

    Article  MathSciNet  Google Scholar 

  16. F. Miranda, J. F. Rodrigues, and L. Santos, ‘‘On a \(p\)-curl system arising in electromagnetism,’’ Discrete Cont. Dyn. Syst., S 5, 605–629 (2012). https://doi.org/10.3934/dcdss.2012.5.605

  17. F. Miranda, J. F. Rodrigues, and L. Santos, ‘‘Evolutionary quasi-variational and variational inequalities with constraints on the derivatives,’’ Adv. Nonlinear Anal. 9, 250–277 (2020). https://doi.org/10.1515/anona-2018-0113

    Article  MathSciNet  Google Scholar 

  18. X.-B. Pan, ‘‘Existence and regularity of solutions to quasilinear systems of Maxwell and Maxwell-Stokes type,’’ Calculus Var. Partial Differ. Equations 55, 1–43 (2016). https://doi.org/10.1007/s00526-016-1081-9

    Article  MathSciNet  Google Scholar 

  19. C. Pechstein and B. Jüttler, ‘‘Monotonicity-preserving interproximation of \(B{-}H\)-curves,’’ J. Comput. Appl. Math. 196 (1), 45–57 (2006). https://doi.org/10.1016/j.cam.2005.08.021

    Article  MathSciNet  Google Scholar 

  20. A. E. Taylor and D. C. Lay, Introduction to Functional Analysis (John Wiley & Sons, New York, 1980).

    Google Scholar 

  21. H.-M. Yin, ‘‘On a \(p\)-Laplacian type of evolution system and applications to the Bean model in the type-II superconductivity theory,’’ Q. Appl. Math. 59, 47–66 (2001). https://doi.org/10.1090/qam/1811094

    Article  Google Scholar 

  22. H.-M. Yin, B.-Q. Li, and J. Zou, ‘‘A degenerate evolution system modeling Bean’s critical state type-II superconductors,’’ Discrete Cont. Dyn. Syst. 8, 781–794 (2002). https://doi.org/10.3934/dcds.2002.8.781

    Article  MathSciNet  Google Scholar 

  23. H.-M. Yin, ‘‘Regularity of weak solution to a \(p-\textrm{curl}\)-system,’’ Differ. Integr. Equations 19, 361–368 (2008).

    MathSciNet  Google Scholar 

  24. I. Yousept, ‘‘Hyperbolic Maxwell variational inequalities of second kind,’’ ESAIM: Control, Optim. Calculus Var. 26, 34 (2020). https://doi.org/10.1051/cocv/2019015

    Article  MathSciNet  Google Scholar 

  25. I. Yousept, ‘‘Well-posedness theory for electromagnetic obstacle problems,’’ J. Differ. Equations 269, 8855–8881 (2020). https://doi.org/10.1016/j.jde.2020.05.009

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank the anonymous referee for his or her very kind advice about an early version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Aramaki.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aramaki, J. On the de Rham Theorem and an Application to the Maxwell–Stokes Type Problem. J. Contemp. Mathemat. Anal. 55, 356–364 (2020). https://doi.org/10.3103/S1068362320060047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068362320060047

Keywords:

Navigation