Skip to main content
Log in

Geochemical constraints on the evolution of the lithospheric mantle beneath central and southern Vietnam

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

We present comprehensive geochemical and isotopic (Sr-Nd-Hf) datasets for two suites of ultramafic rock in Vietnam, namely xenoliths of spinel lherzolite entrained in late Cenozoic alkali basalts, and Paleozoic ultramafic massifs that occur along the Tam Ky-Phuoc Son suture zone in central and southern Vietnam. The ultramafic massifs are the products of high degrees of melt extraction (up to 40%), and have relatively low equilibrium temperatures of 603 to 778 °C. The lherzolites are residues of relatively low degrees of fractional melting (< 1% up to 20%). The compositions of minerals in the xenoliths reveal that the late Cenozoic lithospheric mantle beneath central and southern Vietnam was hotter (825–1058 °C) than during the Paleozoic. The calculated trace element patterns of metasomatic melts that equilibrated with clinopyroxenes in the LREE-enriched xenoliths show enrichments in Th, U, and LREEs, and depletions in Nb. These data, together with the elevated Ti/Eu ratios of the clinopyroxenes, reflect the role of hydrous silicate melts as the main agents of metasomatism. The ultramafic rocks of the Paleozoic massifs contain spinel with TiO2 contents higher than expected for residual spinel, which suggests the influence of boninitic melt(s). In the lherzolite xenoliths, the clinopyroxenes have MORB-like depleted Sr-Nd-Hf isotopic compositions (87Sr/86Sr = 0.70241–0.70416; εNd = +6.6 to 12.3; εHf = +13.1 to 25.1), suggesting metasomatic melts/fluids from upwelling asthenosphere. We suggest that subduction of the (Paleo-)Pacific Plate and continental collision during the Permian–Triassic played key roles in lithospheric replacement and thinning beneath central and southern Vietnam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, A.R., Choi, S.H., Yu, Y., and Lee, D.C., 2017, Petrogenesis of Late Cenozoic basaltic rocks from southern Vietnam. Lithos, 272, 192–204.

    Article  Google Scholar 

  • Arai, S., 1994, Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical Geology, 113, 191–204.

    Article  Google Scholar 

  • Ballhaus, C., Berry, R.F., and Green, D.H., 1991, High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology, 107, 27–40.

    Article  Google Scholar 

  • Bertrand, P. and Mercier, J.-C., 1985, The mutual solubility of coexisting ortho- and clinopyroxene: toward an absolute geothermometer for the natural system? Earth and Planetary Science Letters, 76, 109–122.

    Article  Google Scholar 

  • Bizimis, M., Salters, V.J.M., and Dawson, J.B., 2003, The brevity of carbonatite sources in the mantle: evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 145, 281–300.

    Article  Google Scholar 

  • Blichert-Toft, J., Frey, F.A., and Albarède, F., 1999, Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science, 285, 879–882.

    Article  Google Scholar 

  • Bouvier, A., Vervoort, J.D., and Patchett, P.J., 2008, The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequili-brated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, 48–57.

    Article  Google Scholar 

  • Boyd, F.R., 1989, Compositional distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters, 96, 15–26.

    Article  Google Scholar 

  • Boyd, F.R., Pokhilenko, N.P., Pearson, D.G., Mertzman, S.A., Sobolev, N.V, and Finger, L.W., 1997, Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contributions to Mineralogy and Petrology, 128, 228–246.

    Article  Google Scholar 

  • Brey, G.P. and Köhler, T.P., 1990, Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31, 1353–1378.

    Article  Google Scholar 

  • Bui, T.S.V, Osanai, Y., Nakano, N., Adachi, T., Kitano, I., and Owada, M., 2020, Timing of high-grade metamorphism in the Kontum Massif, Vietnam: constraints from zircon-monazite multi-geochronology and trace elements geochemistry of zircon-monazite-garnet. Journal of Asian Earth Sciences, 187. https://doi.org/10.1016/j.jseaes.2019.104084

  • Bui, A.N., Tran, T.H., Ngo, T.P., Hoang, H.T., Tran, T.A., and Pham, T.D., 2005, Mafic and ultramafic magmatic formation in the Ha Giang and north Pho Rang areas. Journal of Earth Sciences, 27, 103–114.

    Google Scholar 

  • Carignan, J., Ludden, J., and Francis, D., 1996, On the recent enrichment of subcontinental lithosphere: a detailed U-Pb study of spinel lherzolite xenoliths, Yukon, Canada. Geochimica et Cosmochimica Acta, 60, 4241–4252.

    Article  Google Scholar 

  • Carter, A., Roques, D., Bristow, C., and Kinny, P., 2001, Understanding Mesozoic accretion in Southeast Asia: significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 29, 211–214.

    Article  Google Scholar 

  • Chauvel, C. and Blichert-Toft, J., 2001, A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters, 190, 137–151.

    Article  Google Scholar 

  • Choi, S.H., Kwon, S.-T., Mukasa, S.B., and Sagong, H., 2005, Sr-Nd-Pb isotope and trace element systematics of mantle xenoliths from Late Cenozoic alkaline lavas, South Korea. Chemical Geology, 221, 40–64.

    Article  Google Scholar 

  • Choi, S.H., Mukasa, S.B., Andronikov, A.V., and Marcano, M.C., 2007, Extreme Sr-Nd-Pb- Hf isotopic compositions exhibited by the Tinaquillo peridotite massif, Northern Venezuela: implications for geodynamic setting. Contributions to Mineralogy and Petrology, 153, 443–463.

    Article  Google Scholar 

  • Choi, S.H., Shervais, J.W., and Mukasa, S.B., 2008, Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contributions to Mineralogy and Petrology, 156, 551–576.

    Article  Google Scholar 

  • Coltorti, M., Bonadiman, C., Hinton, R.W., Siena, F., and Upton, B.G., 1999, Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore Indian Ocean. Journal of Petrology, 40, 133–165.

    Article  Google Scholar 

  • Coltorti, M., Bonadiman, C., O’Reilly, S.Y., Griffin, WL., and Pearson, N.J., 2010, Buoyant ancient continental mantle embedded in oceanic lithosphere (Sal Island, Cape Verde Archipelago). Lithos, 120, 223–233.

    Article  Google Scholar 

  • Condie, K.C., 2016, Earth as an Evolving Planetary System. Elsevier, Amsterdam, 430 p.

    Google Scholar 

  • Dick, H.J.B. and Bullen, T., 1984, Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86, 54–76.

    Article  Google Scholar 

  • Downes, H., Embey-Isztin, A., and Thirlwall, M.F., 1992, Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantle. Contributions to Mineralogy and Petrology, 109, 340–354.

    Article  Google Scholar 

  • Fabriés, J., 1979, Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contributions to Mineralogy and Petrology, 69, 329–336.

    Article  Google Scholar 

  • Gao, S., Rudnick, R.L., Carlson, R.W, McDonough, WF., and Liu, Y.-S., 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters, 198, 307–322.

    Article  Google Scholar 

  • Gao, S., Rudnick, R.L., Yuan, H.-L., Liu, X.-M., Liu, Y.-S., Xu, W.-L., Ling, W-L., Ayers, J., Wang, X.-C., and Wang, Q.-H., 2004, Recycling lower continental crust in the North China Craton. Nature, 432, 892–897.

    Article  Google Scholar 

  • Griffin, WL., Andi, Z., O’Reilly, S.Y., and Ryan, C.G., 1998, Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In: Flowers, M.F.J., Chung, S.L., Lo, C.H., and Lee, T.Y. (eds.), Mantle Dynamics and Plate Interaction in East Asia. Geodynamics Series, American Geophysical Union, 27, p. 107–126.

  • Griffin, W.L., Powell, W.J., Pearson, N.J., and O’Reilly, S.Y., 2008, GLITTER: data reduction software for laser ablation ICP-MS. In: Sylvester, P. (ed.), Laser Ablation-ICP-MS in the Earth Sciences. Mineral Association of Canada, Short Course Series, 40, p. 308–311.

  • Griffin, W.L., Shee, S.R., Ryan, C.G., Win, T.T., and Wyatt, B.A., 1999, Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contributions to Mineralogy and Petrology, 134, 232–250.

    Article  Google Scholar 

  • Hoang, N., 2005, Lithospheric mantle under Pleiku: evidence from ultramafic xenoliths. Journal of Geology, A287, 8–19 (in Vietnamese with English abstract).

    Google Scholar 

  • Hoang, N. and Flower, M., 1998, Petrogenesis of Cenozoic basalts from Vietnam: implication for origins of a ‘diffuse igneous province’. Journal of Petrology, 39, 369–395.

    Article  Google Scholar 

  • Hoang, N., Flower, M., and Carlson, R., 1996, Major, trace element, and isotopic compositions of Vietnamese basalts: interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere. Geochimica et Cosmochimica Acta, 60, 4329–4351.

    Article  Google Scholar 

  • Hoang, N., Flower, M., Chi, C.T., Xuan, P.T., Quy, H.V, and Son, T.T., 2013, Collision-induced basalt eruptions at Pleiku and Buon Me Thuot, south-central Viet Nam. Journal of Geodynamics, 69, 65–83.

    Article  Google Scholar 

  • Hoang, T.H.A., Choi, S.H., Yu, Y., Pham, T.H., Nguyen, K.H., and Ryu, J.-S., 2018, Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam. Lithos, 296, 382–395.

    Article  Google Scholar 

  • Ionov, D.A., Dupuy, C., O’Reilly, S.Y., Kopylova, M.G., and Genshaft, Y.S., 1993, Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth and Planetary Science Letters, 119, 283–297.

    Article  Google Scholar 

  • Ishii, T., Robinson, P.T., Maekawa, H., and Fiske, R., 1992, Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. Proceedings of the Ocean Drilling Program, Scientific Results, Ocean Drilling Program, Texas A & M University, College Station, 125, p. 445–485.

    Google Scholar 

  • Jiang, Y.H., Jiang, S.Y., Zhao, K.D., Ni, P., Ling, H.F., and Liu, D.Y., 2005, SHRIMP U-Pb zircon dating for lamprophyre from Liaodong Peninsula: constraints on the initial time of Mesozoic lithosphere thinning beneath eastern China. Chinese Science Bulletin, 50, 2612–2620.

    Article  Google Scholar 

  • Johnson, K.T.M., Dick, H.J.B., and Shimizu, N., 1990, Melting in the oceanic upper mantle: an ion microprobe study of diopside in abyssal peridotites. Journal of Geophysical Research, 95, 2661–2678.

    Article  Google Scholar 

  • Kessel, R., Schmidt, M.W., Ulmer, P., and Pettke, T., 2005, Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437, 724–727.

    Article  Google Scholar 

  • Kim, J.-I., Choi, S.H., and Yi, K., 2019, Petrogenesis of Mesozoic granites at Garorim Bay, South Korea: evidence for an exotic block within the southwestern Gyeonggi massif? Geosciences Journal, 23, 1–20.

    Article  Google Scholar 

  • Lepvrier, C., Vuong, N.V., Maluski, H., Thi, P.T., and Tich, V.V., 2008, Indosinian tectonics in Vietnam. Comptes Rendus Geoscience, 340, 94–111

    Article  Google Scholar 

  • Li, X.Y., Zheng, J.-P., Sun, M., Pan, S.-K., Wang, W, and Xia, Q.-K., 2014, The Cenozoic lithospheric mantle beneath the interior of South China Block: constraints from mantle xenoliths in Guangxi Province. Lithos, 210–211, 14–26.

    Article  Google Scholar 

  • Li, Z.H., Liu, M., and Gerya, T.V., 2016, Lithosphere delamination in continental collisional orogens: a systematic numerical study. Journal of Geophysical Research Solid Earth, 121, 5186–5211.

    Article  Google Scholar 

  • Liu, C.Z., Liu, Z.C., Wu, F.Y., and Chu, Z.Y., 2012, Mesozoic accretion of juvenile sub-continental lithospheric mantle beneath South China and its implications: geochemical and Re-Os isotopic results from Ningyuan mantle xenoliths. Chemical Geology, 291, 186–198.

    Article  Google Scholar 

  • Liu, C.Z., Zhang, C., Liu, Z.C., Sun, J., Chu, Z.Y., and Qiu, Z.L., 2017, Formation age and metasomatism of the sub-continental lithospheric mantle beneath southeast China: Sr-Nd-Hf-Os isotopes of Mingxi mantle xenoliths. Journal of Asian Earth Sciences, 145, 591–604.

    Article  Google Scholar 

  • Liu, J., Cai, R., Pearson, D.G., and Scott, J.M., 2019, Thinning and destruction of the lithospheric mantle root beneath the North China Craton: a review. Earth-Science Reviews, 196, 102873. https://doi.org/10.1016/j.earscirev.2019.05.017

    Article  Google Scholar 

  • Lu, J.G., Zheng, J.P., Griffin, WL., and Yu, C.M., 2013, Petrology and geochemistry of peridotite xenoliths from the Lianshan region: nature and evolution of lithospheric mantle beneath the lower Yangtze block. Gondwana Research, 23, 161–175.

    Article  Google Scholar 

  • Ma, L., Jiang, S.Y., Hofmann, A.W., Dai, B.Z., Hou, M.L., Zhao, K.D., Chen, L.H., Li, J.W., and Jiang, Y.H., 2014, Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: a consequence of rapid lithospheric thinning beneath the North China Craton? Geochimica et Cosmochimica Acta, 124, 250–271.

    Article  Google Scholar 

  • McDonough, W.F. and Frey, F.A., 1989, Rare earth elements in upper mantle rocks. Reviews in Mineralogy and Geochemistry, 21, 100–145.

    Google Scholar 

  • McDonough, W.F., Stosch, H.-G., and Ware, N., 1992, Distribution of titanium and the rare earth elements between peridotitic minerals. Contributions to Mineralogy and Petrology, 110, 321–328.

    Article  Google Scholar 

  • Menzies, M.A., Fan, W.M., and Zhang, M., 1993, Palaeozoic and Cenozoic lithoprobes and loss of >120 km of Archean lithosphere, Sino-Korean craton, China. In: Prichard, H.M., Alabaster, T., Harris, N.B.W., and Neary, C.R. (eds.), Magmatic Processes and Plate Tectonics. Geological Society, London, Special Publications, 76, p. 71–81.

    Google Scholar 

  • Nagy, E.A., Maluski, H., Lepvrier, C., Schärer, U., Phan Truong Thi, Leyreloup, A., and Vu Van Tich, 2001, Geodynamic significance of the KonTum Massif in central Vietnam: Composite 40Ar/39Ar and U-Pb ages from Paleozoic to Triassic. Journal of Geology, 109, 755–770.

    Article  Google Scholar 

  • Nguyen, T.B.T., Satir, M., Siebel, W., and Chen, F., 2004a, Granitoids in the Dalat zone, southern Vietnam: age constraints on magmatism and regional geological implications. International Journal of Earth Sciences, 93, 329–340.

    Article  Google Scholar 

  • Nguyen, T.B.T., Satir, M., Siebel, W., Vennemann, T., and Long, T.V., 2004b, Geochemical and isotopic constraints on the petrogenesis of granitoids from the Dalat zone, southern Vietnam. Journal of Asian Earth Sciences, 23, 467–482.

    Article  Google Scholar 

  • Nguyen, T.C. and Kil, Y.-W., 2019, The evolution of the lithospheric mantle beneath Ia Bang, Pleiku plateau, Central Vietnam. Journal of Asian Earth Sciences, 174, 232–244.

    Article  Google Scholar 

  • Nguyen, X.B. (ed.), 2001, Tectonics and metallogeny of south Vietnam. Final report to the Ministerial project (Ministry of Natural Resources and Environment), Archives of the Center for Geology Information and Literature, Ha Noi (in Vietnamese).

  • Norman, M.D., 1998, Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contributions to Mineralogy and Petrology, 130, 240–255.

    Article  Google Scholar 

  • O’Reilly, S.Y., Griffin, W.L., Yvette, H.P.D., and Morgan, P., 2001, Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle through time. GSA Today, 11, 4–10.

    Article  Google Scholar 

  • Osanai, Y., Nakano, N., Owada, M., Tra, N.M., Miyamoto, T., Nguyen, T.M., Nguyen, V.N., and Tran, V.T., 2008, Collision zone metamorphism in Vietnam and adjacent South-eastern Asia: proposition for Trans Vietnam Orogenic Belt. Journal of Mineralogical and Penological Sciences, 103, 226–241.

    Article  Google Scholar 

  • Osanai, Y., Nakano, N., Owada, M., Tran Ngoc Nam, Toyoshima, T., Tsunogae, T., and Pham Binh, 2004, Permo-Triassic ultrahigh-temperature metamorphism in the Kontum massif, central Vietnam. Journal of Mineralogical and Petrological Sciences, 99, 225–241.

    Article  Google Scholar 

  • Osanai, Y., Owada, M., Tsuogae, T., Toyoshima, T., Hokada, T., Long, T.V, Sajeev, K., and Nakano, N., 2001, Ultrahigh-temperature politic granulites from Kontum massif, central Vietnam: evidence for East Asian juxtaposition at ca. 250 Ma. Gondwana Research, 4, 720–723.

    Article  Google Scholar 

  • Park, K., Choi, S.H., Cho, M., and Lee, D.-C., 2017, Evolution of the lithospheric mantle beneath Mt. Baekdu (Changbaishan): constraints from geochemical and Sr-Nd-Hf isotopic studies on peridotite xenoliths in trachybasalt. Lithos, 286, 330–344.

    Article  Google Scholar 

  • Parkinson, I.J. and Pearce, J.A., 1998, Peridotites of the Izu-Bonin-Mariana forearc (ODP Leg 125) evidence for mantle melting and meltmantle interaction in a suprasubduction zone setting. Journal of Petrology, 39, 1577–1618.

    Article  Google Scholar 

  • Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J., and Leat, P.T., 2000, Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, south Atlantic. Contributions to Mineralogy and Petrology, 139, 36–53.

    Article  Google Scholar 

  • Prouteau, G., Scaillet, B., Pichavant, M., and Maury, R., 2001, Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410, 197–200.

    Article  Google Scholar 

  • Quoc, N.K. and Giao, N.T., 1980, Cenozoic basaltic activity in Vietnam. Geology and Mineral Resources of Vietnam, 2, 137–154. (in Vietnamese with English abstract)

    Google Scholar 

  • Rampone, E., Bottazzi, P., and Ottolini, L., 1991, Complementary Ti and Zr anomaly in orthopyroxene and clinopyroxene from mantle peridotites. Nature, 354, 518–520.

    Article  Google Scholar 

  • Reisberg, L., Zhi, X., Lorand, J.-P., Wagner, C., Peng, Z., and Zimmermann, C., 2005, Re-Os and S systematics of spinel peridotite xenoliths from east central China: evidence for contrasting effects of melt percolation. Earth and Planetary Science Letters, 239, 286–308.

    Article  Google Scholar 

  • Salters, V.J.M. and Stracke, A., 2004, Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5, Q05004. https://doi.org/10.1029/2003GC000597

    Article  Google Scholar 

  • Salters, V.J.M. and White, W.M., 1998. Hf isotope constraints on mantle evolution. Chemical Geology, 145, 447–460.

    Article  Google Scholar 

  • Shaw, D.M., 1970, Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta, 34, 237–243.

    Article  Google Scholar 

  • Shellnutt, J.G., Lan, C.-Y., Long, T.V., Usuki, T., Yang, H.-J., Mertzman, S.A., Lizuka, Y., Chung, S.-L., Wang, K.-L., and Hsu, W.-Y., 2013, Formation of Cretaceous Cordilleran and postorogenic granites and their enclaves from the Dalat zone, southern Vietnam: tectonic implications for the evolution of Southeast Asia. Lithos, 182–183, 229–241.

    Article  Google Scholar 

  • Stalder, R., Foley, S.F., Brey, G.P., and Horn, I., 1998, Mineral-aqueous fluid partitioning of trace elements at 900–1200 °C and 3.0–5.7 GPa: new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimica et Cosmochimica Acta, 62, 1781–1801.

    Article  Google Scholar 

  • Sun, S.-S. and McDonough, WF., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In: Saunders, A.D. and Norry, M.J. (eds.), Magmatism in the Ocean Basin. Geological Society, London, Special Publications, 42, p. 313–345.

    Google Scholar 

  • Tang, J., Xu, WL., Wang, F., and Ge, W.C., 2018, Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic–Paleogene magmatic records in Northeast Asia. Science China Earth Sciences, 61, 527–559.

    Article  Google Scholar 

  • Tatsumoto, M., Basu, A.R., Huang, W, Wang, J., and Xie, G., 1992, Sr, Nd and Pb isotopes of ultramafic xenoliths in volcanic rocks of eastern China: enriched components EMI and EMII in subcontinental lithosphere. Earth and Planetary Science Letters, 113, 107–128.

    Article  Google Scholar 

  • Taylor, B. and Hayes, D.E., 1983, Origin and history of the South China Sea Basin. In: Hayes, D.E. (ed.), The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. AGU Geophysical Monograph, 27, p. 23–56.

  • Tri, T.V. and Khuc, V, 2009, Geology and Earth Resources of Vietnam. Ministry of Natural Resources and Environment, General Department of Geology and Minerals of Vietnam, Hanoi, 634 p.

    Google Scholar 

  • Tung, NX and Tri, T.V, 1992, Structural map of Vietnam (1:1,000,000). Geological Survey of Vietnam, Hanoi.

    Google Scholar 

  • Wang, F., Xu, Y.G., Xu, WL., Yang, L., Wu, W, and Sun, C.Y., 2017, Early Jurassic calc-alkaline magmatism in northeast China: magmatic response to subduction of the Paleo-Pacific Plate beneath the Eurasian continent. Journal of Asian Earth Sciences, 143, 249–268.

    Article  Google Scholar 

  • Wells, P.R.A., 1977, Pyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology, 62, 129–139.

    Article  Google Scholar 

  • Xu, W.-L., Zhou, Q.-J., Pei, F.-P., Yang, D.-B., Gao, S., Li, Q.-L., and Yang, Y.-H., 2013, Destruction of the North China Craton: delamination or thermal/chemical erosion? Mineral chemistry and oxygen isotope insights from websterite xenoliths. Gondwana Research, 23, 119–129.

    Article  Google Scholar 

  • Xu, X.S., O’Reilly, S.Y., Griffin, W.L., and Zhou, X.M., 2003, Enrichment of upper mantle peridotite: petrological, trace element and isotopic evidence in xenoliths from SE China. Chemical Geology, 198, 163–188.

    Article  Google Scholar 

  • Xu, Y., 2002, Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms: pyroxenite xenoliths from Hannuoba, North China. Chemical Geology, 182, 301–322.

    Article  Google Scholar 

  • Xu, Y.G., 2001, Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26, 747–757.

    Article  Google Scholar 

  • Yang, J.H., Zhang, M., and Wu, F.Y., 2018, Mesozoic decratonization of the North China Craton by lithospheric delamination: evidence from Sr-Nd-Hf-Os isotopes of mantle xenoliths of Cenozoic alkaline basalts in Yangyuan, Hebei Province, China. Journal of Asian Earth Sciences, 160, 396–407.

    Article  Google Scholar 

  • Yaxley, G.M., Crawford, A.J., and Green, G.H., 1991, Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth and Planetary Science Letters, 107, 305–317.

    Article  Google Scholar 

  • Zangana, N.A., Downes, H., Thirlwall, M.F., Marriner, G.F., and Bea, F., 1999, Geochemical variation in peridotite xenoliths and their constituent clinopyroxenes from Ray Pic (French Massif Central): implications for the composition of the shallow lithospheric mantle. Chemical Geology, 153, 11–35.

    Article  Google Scholar 

  • Zhang, H.F., 2005, Transformation of lithospheric mantle through peridotite-melt reaction: a case of Sino-Korean craton. Earth and Planetary Science Letters, 237, 768–780.

    Article  Google Scholar 

  • Zhang, H.F., Goldstein, S.L., Zhou, X.H., Sun, M., Zheng, J.P., and Cai, Y., 2008, Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contributions to Mineralogy and Petrology, 155, 271–293.

    Article  Google Scholar 

  • Zheng, J.P., Griffin, W.L., O’Reilly, S.Y., Yu, C.M., Zhang, H.F., Pearson, N., and Zhang, M., 2007, Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochimica et Cosmochimica Acta, 71, 5203–5225.

    Article  Google Scholar 

  • Zheng, J.P., O’Reilly, S.Y., Griffin, W.L., Lu, F.X., Zhang, M., and Pearson, N.J., 2001, Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution. Lithos, 57, 43–66.

    Article  Google Scholar 

  • Zheng, J.P., O’Reilly, S.Y., Griffin, W.L., Zhang, M., Lu, F.X., and Liu, G.L., 2004, Nature and evolution of Mesozoic-Cenozoic lithospheric mantle beneath the Cathaysia block, SE China. Lithos, 74, 41–65.

    Article  Google Scholar 

  • Zheng, Y.F., 2012, Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology, 328, 5–48.

    Article  Google Scholar 

  • Zheng, Y.F., Xu, Z., Zhao, Z.F., and Dai, L.Q., 2018, Mesozoic mafic magmatism in North China: implications for thinning and destruction of cratonic lithosphere. Science China Earth Sciences, 61, 353–385.

    Article  Google Scholar 

  • Zhou, J.B. and Long, L., 2017, The Mesozoic accretionary complex in Northeast China: evidence for the accretion history of Paleo-Pacific subduction. Journal of Asian Earth Sciences, 145, 91–100.

    Article  Google Scholar 

  • Zimbelman, J.R. and Gregg, T.K.P., 2000, Environmental Effects on Volcanic Eruptions: From Deep Oceans to Deep Space. Kluwer Academic/Plenum Publishers, New York, 260 p.

    Book  Google Scholar 

  • Zindler, A. and Hart, S., 1986, Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493–571.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation (NRF) of South Korea funded by the Korea government (MSICT) (NRF-2019R1A2C1086666). Insightful reviews by two anonymous reviewers greatly improved the manuscript. We thank Seung Ryeol Lee for the editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Hi Choi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anh, H.T.H., Choi, S.H., Yu, Y. et al. Geochemical constraints on the evolution of the lithospheric mantle beneath central and southern Vietnam. Geosci J 25, 433–451 (2021). https://doi.org/10.1007/s12303-020-0045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-020-0045-4

Key words

Navigation