Skip to main content
Log in

Abstract models for heat engines

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We retrospect three abstract models for heat engines which include a classic abstract model in textbook of thermal physics, a primary abstract model for finite-time heat engines, and a refined abstract model for finite-time heat engines. The detailed models of heat engines in literature of finite-time thermodynamics may be mapped into the refined abstract model. The future developments based on the refined abstract model are also surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Chambadal, Les Centrales Nuclaires, Armand Colin, Paris, 1957

    Google Scholar 

  2. I. I. Novikov, Efficiency of an atomic power generating installation, Soviet J. Atomic Energy 3, 1269 (1957)

    Article  Google Scholar 

  3. F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine at maximum power output, Am. J. Phys. 43(1), 22 (1975)

    Article  ADS  Google Scholar 

  4. B. Andresen, P. Salamon, and R. S. Berry, Thermodynamics in finite time: Extremals for imperfect heat engines, J. Chem. Phys. 66(4), 1571 (1977)

    Article  ADS  Google Scholar 

  5. K. H. Hoffmann, S. J. Watowich, and R. S. Berry, Optimal paths for thermodynamic systems: The ideal Diesel cycle, J. Appl. Phys. 58(6), 2125 (1985)

    Article  ADS  Google Scholar 

  6. A. De Vos, Efficiency of some heat engines at maximum-power conditions, Am. J. Phys. 53(6), 570 (1985)

    Article  ADS  Google Scholar 

  7. L. Chen and Z. Yan, The effect of heat-transfer law on performance of a two-heat-source endoreversible cycle, J. Chem. Phys. 90(7), 3740 (1989)

    Article  ADS  Google Scholar 

  8. J. Chen, The maximum power output and maximum efficiency of an irreversible Carnot heat engine, J. Phys. D Appl. Phys. 27(6), 1144 (1994)

    Article  ADS  Google Scholar 

  9. A. Bejan, Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes, J. Appl. Phys. 79(3), 1191 (1996)

    Article  ADS  Google Scholar 

  10. C. Van den Broeck, Thermodynamic efficiency at maximum power, Phys. Rev. Lett. 95(19), 190602 (2005)

    Article  ADS  Google Scholar 

  11. B. Jiménez de Cisneros and A. C. Hernandez, Collective working regimes for coupled heat engines, Phys. Rev. Lett. 98(13), 130602 (2007)

    Article  ADS  Google Scholar 

  12. M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck, Efficiency at maximum power of low-dissipation Carnot engines, Phys. Rev. Lett. 105(15), 150603 (2010)

    Article  ADS  Google Scholar 

  13. M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck, Quantum-dot Carnot engine at maximum power, Phys. Rev. E 81(4), 041106 (2010)

    Article  ADS  Google Scholar 

  14. B. Gaveau, M. Moreau, and L. S. Schulman, Stochastic thermodynamics and sustainable efficiency in work production, Phys. Rev. Lett. 105(6), 060601 (2010)

    Article  ADS  Google Scholar 

  15. L. Chen, Z. Ding, and F. Sun, Optimum performance analysis of Feynman’s engine as cold and hot ratchets, J. Non-Equilib. Thermodyn. 36(2), 155 (2011)

    Article  MATH  ADS  Google Scholar 

  16. Y. Wang and Z. C. Tu, Efficiency at maximum power output of linear irreversible Carnot-like heat engines, Phys. Rev. E 85(1), 011127 (2012)

    Article  ADS  Google Scholar 

  17. Y. Wang and Z. C. Tu, Bounds of efficiency at maximum power for linear, superlinear and sublinear irreversible Carnot-like heat engines, Europhys. Lett. 98(4), 40001 (2012)

    Article  ADS  Google Scholar 

  18. Y. Wang and Z. C. Tu, Bounds of efficiency at maximum power for normal-, sub- and superdissipative Carnot-like heat engines, Commum. Theor. Phys. 59(2), 175 (2013)

    Article  MATH  ADS  Google Scholar 

  19. J. Wang and J. He, Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction, Phys. Rev. E 86(5), 051112 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  20. Y. Apertet, H. Ouerdane, C. Goupil, and Ph. Lecoeur, Irreversibilities and efficiency at maximum power of heat engines: The illustrative case of a thermoelectric generator, Phys. Rev. E 85(3), 031116 (2012)

    Article  ADS  Google Scholar 

  21. Y. Izumida and K. Okuda, Efficiency at maximum power of minimally nonlinear irreversible heat engines, Europhys. Lett. 97(1), 10004 (2012)

    Article  ADS  Google Scholar 

  22. J. Guo, J. Wang, Y. Wang, and J. Chen, Universal efficiency bounds of weak-dissipative thermodynamic cycles at the maximum power output, Phys. Rev. E 87(1), 012133 (2013)

    Article  ADS  Google Scholar 

  23. Y. Apertet, H. Ouerdane, C. Goupil, and Ph. Lecoeur, From local force-flux relationships to internal dissipations and their impact on heat engine performance: The illustrative case of a thermoelectric generator, Phys. Rev. E 88(2), 022137 (2013)

    Article  ADS  Google Scholar 

  24. J. Gonzalez-Ayala, L. A. Arias-Hernandez, and F. Angulo-Brown, Connection between maximum-work and maximum-power thermal cycles, Phys. Rev. E 88(5), 052142 (2013)

    Article  ADS  Google Scholar 

  25. H. T. Quan, Maximum efficiency of ideal heat engines based on a small system: Correction to the Carnot efficiency at the nanoscale, Phys. Rev. E 89(6), 062134 (2014)

    Article  ADS  Google Scholar 

  26. A. Calvo Hernández, J. M. M. Roco, A. Medina, S. Velasco, and L. Guzman-Vargas, The maximum power efficiency \(1 - \sqrt \tau \): Research, education, and bibliometric relevance, Eur. Phys. J. Spec. Top. 224(5), 809 (2015)

    Article  Google Scholar 

  27. Y. Izumida and K. Okuda, Linear irreversible heat engines based on local equilibrium assumptions, New J. Phys. 17(8), 085011 (2015)

    Article  MATH  ADS  Google Scholar 

  28. R. Long and W. Liu, Efficiency and its bounds of minimally nonlinear irreversible heat engines at arbitrary power, Phys. Rev. E 94(5), 052114 (2016)

    Article  ADS  Google Scholar 

  29. J. Koning, and J. Indekeu, Engines with ideal efficiency and nonzero power for sublinear transport laws, Eur. Phys. J. B 89(11), 248 (2016)

    Article  ADS  Google Scholar 

  30. Y. Yu, Z. Ding, L. Chen, W. Wang, and F. Sun, Power and efficiency optimization for an energy selective electron heat engine with double-resonance energy filter, Energy 107, 287 (2016)

    Article  Google Scholar 

  31. Y. Apertet, H. Ouerdane, C. Goupil, and Ph. Lecoeur, True nature of the Curzon-Ahlborn efficiency, Phys. Rev. E 96(2), 022119 (2017)

    Article  ADS  Google Scholar 

  32. H. Wang, J. He, and J. Wang, Endoreversible quantum heat engines in the linear response regime, Phys. Rev. E 96(1), 012152 (2017)

    Article  ADS  Google Scholar 

  33. S. H. Lee, J. Um, and H. Park, Nonuniversality of heat-engine efficiency at maximum power, Phys. Rev. E 98(5), 052137 (2018)

    Article  ADS  Google Scholar 

  34. Y. H. Ma, D. Xu, H. Dong, and C. P. Sun, Optimal operating protocol to achieve efficiency at maximum power of heat engines, Phys. Rev. E 98(2), 022133 (2018)

    Article  ADS  Google Scholar 

  35. J. Gonzalez-Ayala, J. Guo, A. Medina, J. M. M. Roco, and A. C. Hernandez, Energetic self-optimization induced by stability in low-dissipation heat engines, Phys. Rev. Lett. 124(5), 050603 (2020)

    Article  ADS  Google Scholar 

  36. V. Blickle and C. Bechinger, Realization of a micrometre-sized stochastic heat engine, Nat. Phys. 8(2), 143 (2012)

    Article  Google Scholar 

  37. I. A. Martínez, É. Roldán, L. Dinis, D. Petrov, J. M. R. Parrondo, and R. A. Rica, Brownian Carnot engine, Nat. Phys. 12(1), 67 (2016)

    Article  Google Scholar 

  38. S. Deng, A. Chenu, P. Diao, F. Li, S. Yu, I. Coulamy, A. del Campo, and H. Wu, Superadiabatic quantum friction suppression in finite-time thermodynamics, Sci. Adv. 4(4), eaar5909 (2018)

    Article  ADS  Google Scholar 

  39. Y. H. Ma, R. X. Zhai, C. P. Sun, and H. Dong, Experimental validation of the 1/τ-scaling entropy generation in finite-time thermodynamics with dry air, Phys. Rev. Lett. 125(21), 210601 (2020)

    Article  ADS  Google Scholar 

  40. T. Schmiedl and U. Seifert, Efficiency at maximum power: An analytically solvable model for stochastic heat engines, Europhys. Lett. 81(2), 20003 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  41. Z. C. Tu, Efficiency at maximum power of Feynman’s ratchet as a heat engine, J. Phys. A 41(31), 312003 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. M. Esposito, K. Lindenberg, and C. Van den Broeck, Thermoelectric efficiency at maximum power in a quantum dot, Europhys. Lett. 85(6), 60010 (2009)

    Article  ADS  Google Scholar 

  43. M. Esposito, K. Lindenberg, and C. Van den Broeck, Universality of efficiency at maximum power, Phys. Rev. Lett. 102(13), 130602 (2009)

    Article  ADS  Google Scholar 

  44. S. Q. Sheng and Z. C. Tu, Universality of energy conversion efficiency for optimal tightcoupling heat engines and refrigerators, J. Phys. A 46(40), 402001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys. 75(12), 126001 (2012)

    Article  ADS  Google Scholar 

  46. S. Q. Sheng and Z. C. Tu, Weighted reciprocal of temperature, weighted thermal flux, and their applications in finite-time thermodynamics, Phys. Rev. E 89(1), 012129 (2014)

    Article  ADS  Google Scholar 

  47. S. Q. Sheng and Z. C. Tu, Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines, Phys. Rev. E 91(2), 022136 (2015)

    Article  ADS  Google Scholar 

  48. L. Onsager, Reciprocal Relations in Irreversible Processes. I., Phys. Rev. 37(4), 405 (1931)

    Article  MATH  ADS  Google Scholar 

  49. H. B. G. Casimir, On Onsager’s Principle of Microscopic Reversibility, Rev. Mod. Phys. 17(2–3), 343 (1945)

    Article  ADS  Google Scholar 

  50. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, 3rd Ed., Interscience, New York, 1961

    MATH  Google Scholar 

  51. M. Büttiker, Transport as a consequence of state-dependent diffusion, Z. Phys. B 68(2–3), 161 (1987)

    Article  ADS  Google Scholar 

  52. R. Landauer, Motion out of noisy states, J. Stat. Phys. 53(1–2), 233 (1988)

    Article  ADS  Google Scholar 

  53. S. Q. Sheng and Z. C. Tu, Hidden symmetries and nonlinear constitutive relations for tightcoupling heat engines, New J. Phys. 17(4), 045013 (2015)

    Article  ADS  Google Scholar 

  54. O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, and E. Lutz, Singleion heat engine at maximum power, Phys. Rev. Lett. 109(20), 203006 (2012)

    Article  ADS  Google Scholar 

  55. G. Verley, M. Esposito, T. Willaert, and C. Van den Broeck, The unlikely Carnot efficiency, Nat. Commun. 5(1), 4721 (2014)

    Article  ADS  Google Scholar 

  56. G. Verley, T. Willaert, C. Van den Broeck, and M. Esposito, Universal theory of efficiency fluctuations, Phys. Rev. E 90(5), 052145 (2014)

    Article  ADS  Google Scholar 

  57. J. H. Jiang, B. K. Agarwalla, and D. Segal, Efficiency statistics and bounds for systems with broken time-reversal symmetry, Phys. Rev. Lett. 115(4), 040601 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  58. J. M. Park, H. M. Chun, and J. D. Noh, Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model, Phys. Rev. E 94(1), 012127 (2016)

    Article  ADS  Google Scholar 

  59. T. Denzler and E. Lutz, Efficiency fluctuations of a quantum heat engine, Phys. Rev. Research 2, 032062 (2020)

    Article  ADS  Google Scholar 

  60. A. C. Barato and U. Seifert, Thermodynamic uncertainty relation for biomolecular processes, Phys. Rev. Lett. 114(15), 158101 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  61. A. E. Allahverdyan, K. V. Hovhannisyan, A. V. Melkikh, and S. G. Gevorkian, Carnot cycle at finite power: Attainability of maximal efficiency, Phys. Rev. Lett. 111(5), 050601 (2013)

    Article  ADS  Google Scholar 

  62. V. Holubec and A. Ryabov, Maximum efficiency of low-dissipation heat engines at arbitrary power, J. Stat. Mech. 2016(7), 073204 (2016)

    Article  Google Scholar 

  63. Y. H. Ma, D. Xu, H. Dong, and C. P. Sun, Universal constraint for efficiency and power of a low-dissipation heat engine, Phys. Rev. E 98(4), 042112 (2018)

    Article  ADS  Google Scholar 

  64. A. Ryabov and V. Holubec, Maximum efficiency of steady-state heat engines at arbitrary power, Phys. Rev. E 93, 050101(R) (2016)

    Article  ADS  Google Scholar 

  65. I. Iyyappan and M. Ponmurugan, General relations between the power, efficiency, and dissipation for the irreversible heat engines in the nonlinear response regime, Phys. Rev. E 97(1), 012141 (2018)

    Article  ADS  Google Scholar 

  66. K. Proesmans, B. Cleuren, and C. Van den Broeck, Power-efficiency-dissipation relations in linear thermodynamics, Phys. Rev. Lett. 116(22), 220601 (2016)

    Article  MATH  ADS  Google Scholar 

  67. N. Shiraishi, K. Saito, and H. Tasaki, Universal tradeoff relation between power and efficiency for heat engines, Phys. Rev. Lett. 117(19), 190601 (2016)

    Article  ADS  Google Scholar 

  68. P. Pietzonka and U. Seifert, Universal trade-off between power, efficiency, and constancy in steady-state heat engines, Phys. Rev. Lett. 120(19), 190602 (2018)

    Article  ADS  Google Scholar 

  69. A. Emmanouilidou, X. G. Zhao, P. Ao, and Q. Niu, Steering an eigenstate to a destination, Phys. Rev. Lett. 85(8), 1626 (2000)

    Article  ADS  Google Scholar 

  70. M. Demirplak and S. A. Rice, Adiabatic population transfer with control fields, J. Phys. Chem. A 107(46), 9937 (2003)

    Article  Google Scholar 

  71. M. V. Berry, Transitionless quantum driving, J. Phys. A 42(36), 365303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  72. X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga, Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity, Phys. Rev. Lett. 104(6), 063002 (2010)

    Article  ADS  Google Scholar 

  73. C. Jarzynski, Generating shortcuts to adiabaticity in quantum and classical dynamics, Phys. Rev. A 88, 040101(R) (2013)

    Article  ADS  Google Scholar 

  74. A. del Campo, Shortcuts to adiabaticity by counterdiabatic driving, Phys. Rev. Lett. 111(10), 100502 (2013)

    Article  ADS  Google Scholar 

  75. S. Deffner, C. Jarzynski, and A. del Campo, Classical and quantum shortcuts to adiabaticity for scale-invariant driving, Phys. Rev. X 4(2), 021013 (2014)

    Google Scholar 

  76. D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Mod. Phys. 91(4), 045001 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  77. J. Deng, Q. Wang, Z. Liu, P. Hanggi, and J. Gong, Boosting work characteristics and overall heat-engine performance via shortcuts to adiabaticity: Quantum and classical systems, Phys. Rev. E 88(6), 062122 (2013)

    Article  ADS  Google Scholar 

  78. Z. C. Tu, Stochastic heat engine with the consideration of inertial effects and shortcuts to adiabaticity, Phys. Rev. E 89(5), 052148 (2014)

    Article  ADS  Google Scholar 

  79. O. Abah and E. Lutz, Performance of shortcut-to-adiabaticity quantum engines, Phys. Rev. E 98(3), 032121 (2018)

    Article  ADS  Google Scholar 

  80. C. Plata, D. Guéry-Odelin, E. Trizac, and A. Prados, Building an irreversible Carnot-like heat engine with an overdamped harmonic oscillator, J. Stat. Mech. 2020(9), 093207 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  81. G. Li, H. T. Quan, and Z. C. Tu, Shortcuts to isothermality and nonequilibrium work relations, Phys. Rev. E 96(1), 012144 (2017)

    Article  ADS  Google Scholar 

  82. J. A. C. Albay, S. R. Wulaningrum, C. Kwon, P. Y. Lai, and Y. Jun, Thermodynamic cost of a shortcuts-to-isothermal transport of a Brownian particle, Phys. Rev. Research 1(3), 033122 (2019)

    Article  ADS  Google Scholar 

  83. J. A. C. Albay, P. Y. Lai, and Y. Jun, Realization of finite-rate isothermal compression and expansion using optical feedback trap, Appl. Phys. Lett. 116(10), 103706 (2020)

    Article  ADS  Google Scholar 

  84. N. Pancotti, M. Scandi, M. T. Mitchison, and M. Perarnau-Llobet, Speed-ups to isothermality: Enhanced quantum thermal machines through control of the system-bath coupling, Phys. Rev. X 10(3), 031015 (2020)

    Google Scholar 

  85. K. Nakamura, J. Matrasulov, and Y. Izumida, Fast-forward approach to stochastic heat engine, Phys. Rev. E 102(1), 012129 (2020)

    Article  ADS  Google Scholar 

  86. A. C. Hernandez, A. Medina, J. M. M. Roco, J. A. White, and S. Velasco, Unified optimization criterion for energy converters, Phys. Rev. E 63(3), 037102 (2001)

    Article  ADS  Google Scholar 

  87. N. Sánchez-Salas, L. López-Palacios, S. Velasco, and A. Calvo Hernandez, Optimization criteria, bounds, and efficiencies of heat engines, Phys. Rev. E 82(5), 051101 (2010)

    Article  ADS  Google Scholar 

  88. C. de Tomas, J. M. M. Roco, A. C. Hernandez, Y. Wang, and Z. C. Tu, Low-dissipation heat devices: Unified tradeoff optimization and bounds, Phys. Rev. E 87(1), 012105 (2013)

    Article  ADS  Google Scholar 

  89. Y. Zhang, C. Huang, G. Lin, and J. Chen, Universality of efficiency at unified trade-off optimization, Phys. Rev. E 93(3), 032152 (2016)

    Article  ADS  Google Scholar 

  90. L. Zhao and Z. C. Tu, Nonlinear constitutive relation and efficiency at maximum power of non-homotypic heat engines, J. Beijing Normal Univ. (Natural Science) 52, 550 (2016)

    Google Scholar 

  91. S. Krishnamurthy, S. Ghosh, D. Chatterji, R. Ganapathy, and A. K. Sood, A micrometre-sized heat engine operating between bacterial reservoirs, Nat. Phys. 12(12), 1134 (2016)

    Article  Google Scholar 

  92. I. A. Martínez, É. Roldán, L. Dinis, and R. A. Rica, Colloidal heat engines: A review, Soft Matter 13(1), 22 (2017)

    Article  ADS  Google Scholar 

  93. P. Pietzonka, É. Fodor, C. Lohrmann, M. E. Cates, and U. Seifert, Autonomous engines driven by active Matter: Energetics and design principles, Phys. Rev. X 9(4), 041032 (2019)

    Google Scholar 

  94. T. Ekeh, M. Cates, and É. Fodor, Thermodynamic cycles with active matter, Phys. Rev. E 102, 010101(R) (2020)

    Article  MathSciNet  ADS  Google Scholar 

  95. A. Kumari, P. S. Pal, A. Saha, and S. Lahiri, Stochastic heat engine using an active particle, Phys. Rev. E 101(3), 032109 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  96. J. S. Lee, J. M. Park, and H. Park, Brownian heat engine with active reservoirs, Phys. Rev. E 102(3), 032116 (2020)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful for financial supports from the National Natural Science Foundation of China (Grant Nos. 11975050 and 11675017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-Chun Tu.

Additional information

Special Topic

Thermodynamics and Thermal Metamaterials (Editor: Ji-Ping Huang). arXiv: 2010.05477. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-020-1029-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, ZC. Abstract models for heat engines. Front. Phys. 16, 33202 (2021). https://doi.org/10.1007/s11467-020-1029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1029-6

Keywords

Navigation