Skip to main content
Log in

Experimental and Model Estimates of Respiration of the Forest Sod-Podzolic Soil in the Prioksko-Terrasny Nature Reserve

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

Modeling the carbon cycle in forests is often restricted by modeling the main components, including emissions (respiration of soils and debris) and production (deposition of carbon in plants and soils). In this study we examine the applicability of various versions of the T&P model to estimate monthly, seasonal, and annual fluxes of CO2 from the sod-podzolic soil in the mixed forest of the Prioksko-Terrasny Nature Reserve, Moscow oblast. The model is parameterized and verified, and the accuracy is tested using a database of 20 years of monitoring CO2 emissions from soils and independent weather variables, including mean monthly air temperature and monthly precipitation. Numeric experiments show that all versions of the T&P model (both initial and parameterized by training sets at different temporal intervals) satisfactorily describe the long-term dynamics of mean monthly respiration of the sod-podzolic soil under forest cover (SRm). Parameterization of the T&P model with experimental data as a training set practically does not improve the quality of modeling in any of the test intervals. The use of weather data averaged over 20 years for the calculation of SRmod-mean and estimates of seasonal and annual soil fluxes of CO2 on their basis (SeSRmod-mean) in most cases overestimates the corresponding experimentally obtained values (SeSRexp). SeSRmod-mean for annual, summer, and winter soil CO2 fluxes are on average 4.5–6.7% higher than SeSRexp, and SeSRmod-mean for the warm season shows an overestimation of approximately 3%. The largest discrepancy of calculated estimates to experimental data is found for the spring period: the overestimation amounts to ~22%. Thus, the use of weather data averaged over 20 years has shown the applicability of an ensemble of versions of the T&P model for estimating seasonal and annual fluxes of CO2 from soil in a humid continental climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bukvareva, E.N., Grunewald, K., Bobylev, S.N., Zamolodchikov, D.G., Zimenko, A.V., and Bastian, O., The current state of knowledge of ecosystems and ecosystem services in Russia: a status report, Ambio, 2015, vol. 44, no. 6, pp. 491–507. https://doi.org/10.1007/s13280-015-0674-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen, S., Huang, Y., Zou, J., Shen, Q., Hu, Z., Qin, Y., Chen, H., and Pan, G., Modeling interannual variability of global soil respiration from climate and soil properties, Agric. For. Meteorol., 2010, vol. 150, no. 4, pp. 590‒605.

    Article  Google Scholar 

  3. Chertov, O.G. and Nadporozhskaya, M.A., Models of dynamics of soil organic matter: problems and prospects, Komp’yut. Issled. Model., 2016, vol. 8, no. 2, pp. 391−399.

    Google Scholar 

  4. Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A.Z., and Schepaschenko, D.G. Boreal forest health and global change, Science, 2015, vol. 349, no. 6250, pp. 819‒822.

    Article  CAS  Google Scholar 

  5. Hashimoto, S., Carvalhais, N., Ito, A., Migliavacca, M., Nishina, K., and Reichstein, M., Global spatiotemporal distribution of soil respiration modeled using a global database, Biogeosciences, 2015, vol. 12, pp. 4121–4132.

    Article  Google Scholar 

  6. Isaev, A.S., Soukhovolsky, V.G., and Khlebopros, R.G., Model approaches to description of critical phenomena in forest ecosystems, Contemp. Probl. Ecol., 2011, vol. 4, no. 7, pp. 699‒705.

    Article  Google Scholar 

  7. Ivanov, A.V., Braun, M., and Tataurov, V.A., Seasonal and daily dynamics of the CO2 emission from soils of Pinus koraiensis forests in the south of the Sikhote-Alin Range, Eurasian Soil Sci., 2018, vol. 51, no. 3, pp. 290–295.

    Article  CAS  Google Scholar 

  8. Janssens, I.A. and Pilegaard, K., Large seasonal changes in Q 10 of soil respiration in a beech forest, Global Change Biol., 2003, vol. 9, no. 6, pp. 911‒918.

    Article  Google Scholar 

  9. Karelin, D.V., Zamolodchikov, D.G., and Isaev, A.S., Unconsidered sporadic sources of carbon dioxide emission from soils in taiga forests, Dokl. Biol. Sci., 2017, vol. 475, no. 1, pp. 165‒168.

    Article  CAS  Google Scholar 

  10. Karelin, D.V., Pochikalov, A.V., Zamolodchikov, D.G., and Gitarskii, M.L., Factors of spatiotemporal variability of CO2 fluxes from soils of southern taiga spruce forests of Valdai, Contemp. Probl. Ecol., 2014, vol. 7, no. 7, pp. 743‒751.

    Article  Google Scholar 

  11. Kätterer, T., Reichstein, M., Andrén, O., and Lomander, A., Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models, Biol. Fertil. Soils, 1998, vol. 27, pp. 258‒262.

    Article  Google Scholar 

  12. Komarov, A.S., Chertov, O.G., Nadporozhskaya, M.A., and Priputina, I.V., Modelirovanie dinamiki organicheskogo veshchestva lesnykh pochv (Modeling of Dynamics of Organic Matter in Forest Soils), Kudeyarov, V.N., Ed., Moscow: Nauka, 2007.

    Google Scholar 

  13. Kurganova, I.N., Lopes de Gerenyu, V.O., Rozanova, L.N., Sapronov, D.V., Myakshina, T.N., and Kudeyarov, V.N., Annual and seasonal CO2 fluxes from Russian southern taiga soils, Tellus B, 2003, vol. 55, no. 2, pp. 338‒344.

    Article  Google Scholar 

  14. Kurganova, I.N., Lopes de Gerenyu, V.O., Myakshina, T.N., Sapronov, D.V., and Kudeyarov, V.N., CO2 emission from soils of various ecosystems of the southern taiga zone: data analysis of continuous 12-year monitoring, Dokl. Biol. Sci., 2011a, vol. 436, no. 1, pp. 56‒58.

    Article  CAS  Google Scholar 

  15. Kurganova, I.N., Lopes de Gerenyu, V.O., Petrov, A.S., Myakshina, T.N., Sapronov, D.V., Ableeva, V.A., and Kudeyarov, V.N., Effect of the observed climate changes and extreme weather phenomena on the emission component of the carbon cycle in different ecosystems of the southern taiga zone, Dokl. Biol. Sci., 2011b, vol. 441, no. 1, pp. 412–416.

    Article  CAS  Google Scholar 

  16. Kurganova, I.N., Lopes de Gerenyu, V.O., Gallardo Lancho, J.F., and Oehm, C.T., Evaluation of the rates of soil organic matter mineralization in forest ecosystems of temperate continental, Mediterranean, and tropical monsoon climates, Eurasian Soil Sci., 2012, vol. 45, no. 1, pp. 68–79.

    Article  CAS  Google Scholar 

  17. Kurganova, I.N., Lopes de Gerenyu, V.O., Ableeva, V.A., and Bykhovets, S.S., Climate of southern Moscow region: modern trends and extremeness assessment, Fundam. Prikl. Klimatol., 2017a, no. 4, pp. 62‒78.

  18. Kurganova, I.N., Lopes de Gerenyu, V.O., Myakshina, T.N., Sapronov, D.V., Savin, I.Yu., and Shorohova, E.V., Carbon balance in forest ecosystems of southern part of Moscow region under a rising aridity of climate, Contemp. Probl. Ecol., 2017b, vol. 10, no. 7, pp. 748–760.

    Article  Google Scholar 

  19. Kurganova, I.N., Lopes de Gerenyu, V.O., Romashkin, I.V., Myakshina, T.N., and Sapronov, D.V., Application of T&P model for numerical assessment of annual emissions of CO2 from forest soils, Materialy Vserossiiskoi nauchnoi konferentsii “Nauchnye osnovy ustoichivogo upravleniya lesami” (Proc. All-Russ. Sci. Conf. “Scientific Principles of Sustainable Forest Management”), Moscow: Tsentr Probl. Ekol. Prod. Lesov, Ross. Akad. Nauk, 2018, pp. 196‒197.

  20. Lal, R., Forest soils and carbon sequestration, For. Ecol. Manage., 2005, vol. 220, pp. 242–258.

    Article  Google Scholar 

  21. Le Quéré, C., Peters, G.P., Andres, R.J., Andrew, R.M., Boden, T.A., Ciais, P., Friedlingstein, P., Houghton, R.A., Marland, G., Moriarty, R., Sitch, S., Tans, P., Arneth, A., Arvanitis, A., Bakker, D.C.E., et al., Global carbon budget 2014, Earth Syst. Sci. Data Discuss., 2014, vol. 6, no. 1, pp. 235‒263.

    Article  Google Scholar 

  22. Liu, Y., Shang, Q., Wang, Z., Zhang, K., and Zhao, C., Spatial heterogeneity of soil respiration response to precipitation pulse in a temperate mixed forest in Central China, J. Plant Anim. Ecol., 2017, vol. 1, no. 1, pp. 1‒13.

    Article  CAS  Google Scholar 

  23. Lopes de Gerenyu, V.O., Kurganova, I.N., Rozanova, L.N., and Kudeyarov, V.N., Annual emission of carbon dioxide from soils of the Southern Taiga soils of Russia, Eurasian Soil Sci., 2001, vol. 34, no. 9, pp. 931‒944.

    Google Scholar 

  24. Lopes de Gerenyu, V.O., Kurganova, I.N., Rozanova, L.N., and Kudeyarov, V.N., Effect of temperature and moisture content on CO2 evolution rate of cultivated phaeozem: analyses of long-term field experiment, Plant, Soil Environ., 2005, vol. 51, no. 5, pp. 213‒219.

    Article  Google Scholar 

  25. Lukina, N.V., Isaev, A.S., Kryshen’, A.M., Onuchin, A.A., Sirin, A.A., Gagarin, Yu.N., and Bartalev, S.A., Priority trends in the development of forest science as the basis for sustainable forest management, Lesovedenie, 2015, no. 4, pp. 243‒254.

  26. Osipov, A.F., Carbon dioxide emission from the soil surface in a bilberry-sphagnum pine forest of the middle taiga, Eurasian Soil Sci., 2013, vol. 46, no. 5, pp. 572–578.

    Article  CAS  Google Scholar 

  27. R Core Team, version R-3.5.1, 2018. https://cran.r-project. org/bin/windows/base/.

  28. Raich, J.W. and Potter, C.S., Global patterns of carbon dioxide emission from soils, Global Biogeochem. Cycles, 1995, vol. 9, no. 1, pp. 23–36.

    Article  CAS  Google Scholar 

  29. Raich, J.W., Potter, C.S., and Bhagawatti, D., Interannual variability in global soil respiration, 1980‒1994, Global Change Biol., 2002, vol. 8, no. 8, pp. 800‒812.

    Article  Google Scholar 

  30. Reichstein, M., Rey, A., Freibauer, A., Tenhunen, J., Valentini, R., Banza, J., Casals, P., Grünzweig, J.M., Irvine, J., Joffre, R., Law, B.E., Loustau, D., Miglietta, M., Oechel, W., Ourcival, J.-M., et al., Modeling temporal and large spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices, Global Biogeochem. Cycles, 2003, vol. 17, no. 4, p. 1104

    Article  Google Scholar 

  31. Shitikov, V.K., Rozenberg, G.S., and Zinchenko, T.D., Kolichestvennaya gidroekologiya: metody sistemanoi identifikatsii (Quantitative Hydroecology: Methods of Systemic Identification), Toliatti: Inst. Ekol. Volzh. Basseina, Ross. Akad. Nauk, 2003.

  32. Shvidenko, A.Z. and Shchepachenko, D.G., Carbon budget of Russian forests, Sib. Lesn. Zh., 2014, no. 1, pp. 69–92.

  33. Song, X., Peng, C., Zhao, Z., Zhang, Z., Guo, B., Wang, W., Jiang, H., and Zhu, Q., Quantification of soil respiration in forest ecosystems across China, Atmos. Environ., 2014, vol. 94, pp. 546‒551.

    Article  CAS  Google Scholar 

  34. Theil, H., Economic Forecasts and Policy, Amsterdam: North-Holland, 1961.

    Google Scholar 

  35. Vygodskaya, N.N., Varlagin, A.V., Kurbatova, Yu.A., Olchev, A.V., Panferov, O.I., Tatarinov, F.A., and Shalukhina, N.V., Response of taiga ecosystems to extreme weather conditions and climate anomalies, Dokl. Biol. Sci., 2009, vol. 429, no. 6, pp. 571–574.

    Article  CAS  Google Scholar 

  36. Wang, X., Jiang, Y., Jia, B., Wang, F., and Zhou, G., Comparison of soil respiration among three temperate forests in Changbai Mountains, China, Can. J. For. Res., 2010, vol. 40, no. 4, pp. 788‒795.

    Article  Google Scholar 

  37. WorldClim: Maps, graphs, tables, and data of the global climate. http://www.worldclim.org.

  38. Zamolodchikov, D.G., Korovin, G.N., and Gitarskii, M.L., Carbon budget in managed forests of Russian Federation, Lesovedenie, 2007, no. 6, pp. 23‒34.

  39. Zamolodchikov, D.G., Grabovskii, V.I., and Kraev, G.N., A twenty year retrospective on the forest carbon dynamics in Russia, Contemp. Probl. Ecol., 2011, vol. 4, no. 7, pp. 706–715.

    Article  Google Scholar 

  40. Zamolodchikov, D.G., Gitarskii, M.L., Shilkin, A.V., Marunich, A.S., Karelin, D.V., Blinov, V.G., and Ivashchenko, A.I., Monitoring of H2O and CO2 gas exchange at the Log Taezhny landfill (Valdai National Park), Fundam. Prikl. Klimatol., 2017a, no. 1, pp. 54‒68.

  41. Zamolodchikov, D.G., Grabovsky, V.I., Shulyak, P.P., and Chestnykh, O.V., Recent decrease in carbon sink to Russian forests, Dokl. Biol. Sci., 2017b, vol. 476, pp. 200‒202.

    Article  CAS  Google Scholar 

  42. Zamolodchikov, D.G., Grabovskii, V.I., and Chestnykh, O.V., Dynamics of the carbon balance in forests of the federal districts of Russian Federation, Vopr. Lesn. Nauki, 2018, vol. 1, no. 1, pp. 1‒24.

    Google Scholar 

  43. Zheng, Z.M., Yu, G.R., Fu, Y.L., Wang, Y.S., Sun, X.M., and Wang, Y.H., Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: a trans-China based case study, Soil Biol. Biochem., 2009, vol. 5, no. 7, pp. 1‒10.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the staff at the Background Monitoring Station (the settlement of Danki, Serpukhovsky district, Moscow oblast), who provided series of weather data for model calculations.

Funding

This study was carried out as part of State Task no. AAAA-A18-118013190177-9 and with financial support from the Program of the Presidium of the Russian Academy of Sciences (no. AAAA-A18-118013190179-3) and the Russian Foundation for Basic Research (project no. 19-04-01282a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Kurganova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by L. Solovyova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurganova, I.N., Lopes de Gerenyu, V.O., Myakshina, T.N. et al. Experimental and Model Estimates of Respiration of the Forest Sod-Podzolic Soil in the Prioksko-Terrasny Nature Reserve. Contemp. Probl. Ecol. 13, 813–824 (2020). https://doi.org/10.1134/S1995425520070057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425520070057

Keywords:

Navigation