Skip to main content
Log in

Multifunctionality and Biodiversity of Forest Ecosystems

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

This article dwells upon the current understanding of the multifunctionality of forest ecosystems and links between multifunctionality and biodiversity, as well as the trade-offs and synergy between the ecosystem functions (EFs) and services of forests. The relevance of studying ecosystem services (ES’s) is determined by the modern societal needs that have emerged as a result of global economic and population growth. Forest ecosystems provide multiple services simultaneously; i.e., they possess a multifunctionality trait. The majority of studies, however, focus on the relationships between biodiversity and individual ES’s. Therefore, the impact of biodiversity loss on ES’s is greatly underestimated due to the underdeveloped methodology and tools taking into account the multifunctionality of ecosystems. We propose a conceptual scheme of the linkages among biodiversity, multiple functions, and multiple services, including the factors affecting these links. The interdisciplinary concept of links and their introduction to support administrative decision-making necessitates addressing the following: identifying informative indicators of the links and assessing the synergies and trade-offs between various EFs. Reaching those objectives will allow us not only to obtain new fundamental knowledge about processes involved in the functioning of forest ecosystems, but also create markets for ES’s that have not been considered marketable previously and ensure steady, sustainable forest use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Anderson, B.J., Armsworth, P.R., Eigenbrod, F., Thomas, C.D., Gillings, S., Heinemeyer, A., Roy, D.B., and Gaston, K.J., Spatial covariance between biodiversity and other ecosystem service priorities, J. Appl. Ecol., 2009, vol. 46, no. 4, pp. 888–896.

    Article  Google Scholar 

  2. Ansink, E., Hein, L., and Hasund, K.P., To value functions or services? An analysis of ecosystem valuation approaches, Environ. Values, 2008, vol. 17, no. 4, pp. 489–503.

    Article  Google Scholar 

  3. Bennett, E.M., Peterson, G.D., and Gordon, L.J., Understanding relationships among multiple ecosystem services, Ecol. Lett., 2009, vol. 12, no. 12, pp. 1394–1404.

    Article  PubMed  Google Scholar 

  4. Brockerhoff, E.G., Barbaro, L., Castagneyrol, B., Forrester, D.I., Gardiner, B., González-Olabarria, J.R., Lyver, P.O., Meurisse, N., Oxbrough, A., Taki, H., Thompson, I.D., van der Plas, F., and Jactel, H., Forest biodiversity, ecosystem functioning and the provision of ecosystem services, Biodiversity Conserv., 2017, vol. 26, pp. 3005–3035.

    Article  Google Scholar 

  5. Bukvareva, E.N. and Aleshchenko, G.M., Optimal diversity of biological systems and management strategy of biological resources, Materialy 4-oi Ezhegodnoi mezhdunarodnoi konferentsii fakul’teta gosudarstvennogo upravleniya MGU im. M.V. Lomonosova “Gosudarstvennoe upravlenie v XXI veke: Traditsii i novatsii” (Proc. Fourth Annual Int. Conf. of the School of Public Administration of the Moscow State University “Governmental Management in 21st Century: Traditions and Innovations”), Moscow: ROSSPEN, 2006, pp. 204–210.

  6. Byrnes, J.E., Gamfeldt, L., Isbell, F., Lefcheck, J.S., Griffin, J.N., and Hector, A., Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions, Methods Ecol. Evol., 2014, vol. 5, no. 2, pp. 111–124.

  7. Chertov, O.G., Komarov, A.S., Nadporozhskaya, M.A., Bykhovets, S.S., and Zudin, S.L., ROMUL—a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling, Ecol. Model., 2001, vol. 138, pp. 289–308.

  8. Chumachenko, S.I., Syssouev, V.V., Palyonova, M.M., Bredikhin, M.A., and Korotkov, V.N., Simulation of Heterogeneous Uneven-Aged Stands Dynamics under Human-Induced Disturbance: NC General Technical Report, St. Paul: US Dep. Agric., 2000, no. 209, pp. 104–112.

  9. Clemmensen, K.E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., and Lindahl, B.D., Roots and associated fungi drive long-term carbon sequestration in boreal forest, Science, 2013, vol. 339, no. 6127, pp. 1615–1618.

    Article  CAS  PubMed  Google Scholar 

  10. Dee, L.E. Allesina, S., Bonn, A., Eklöf, A., Gaines, S.D., Hines, J., Jacob, U., McDonald-Madden, E., Possingham, H., Schröter, M., and Thompson, R.M., Operationalizing network theory for ecosystem service assessments, Trends Ecol. Evol., 2017, vol. 32, no. 2, pp. 118–130.

    Article  PubMed  Google Scholar 

  11. De Groot, R.S., Alkemade, R., Braat, L., Hein, L., and Willemen, L., Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making, Ecol. Complexity, 2010, vol. 7, no. 3, pp. 260–272.

    Article  Google Scholar 

  12. Deng, X., Li, Z., and Gibson, J., A review on trade-off analysis of ecosystem services for sustainable land-use management, J. Geogr. Sci., 2016, vol. 26, no. 7, pp. 953–968.

    Article  Google Scholar 

  13. Díaz, S., Lavorel, S., de Bello, F., Quétier, F., Grigulis, K., and Robson, T.M., Incorporating plant functional diversity effects in ecosystem service assessments, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 52, pp. 20684–20689.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Duncan, C., Thompson, J.R., and Pettorelli, N., The quest for a mechanistic understanding of biodiversity–ecosystem services relationships, Proc. R. Soc. B, 2015, vol. 282, no. 1817, art. ID 20151348.

  15. Dylis, N.V., The structure of forest biogeocenosis, Materialy XXI Komarovskikh chtenii (Proc. XXI Komarov’s Conf.), Moscow: Nauka, 1969, vol. 21.

  16. Evers, C.R. Wardropper, C.B., Branoff, B., Granek, E.F., Hirsch, S.L., Link, T.E., Olivero-Lora, S., and Wilson, C., The ecosystem services and biodiversity of novel ecosystems: a literature review, Global Ecol. Conserv., 2018, vol. 13, p. e00362.

    Article  Google Scholar 

  17. Filyushkina, A., Ecosystem services and forest management in the Nordic countries, PhD Thesis, Alnarp: Univ. of Copenhagen, 2016.

  18. Frank, S., Böttcher, H., Gusti, M., Havlík, P., Klaassen, G., Kindermann, G., and Obersteiner, M., Dynamics of the land use, land use change, and forestry sink in the European Union: the impacts of energy and climate targets for 2030, Clim. Change, 2016, vol. 138, nos. 1–2, pp. 253–266.

    Article  Google Scholar 

  19. Fridland, V.M., Problemy geografii genezisa i klassifikatsii pochv (Geography of Genesis and Classification of Soils), Moscow: Nauka, 1986.

  20. Gamfeldt, L. and Roger, F., Revisiting the biodiversity–ecosystem multifunctionality relationship, Nat. Ecol. Evol., 2017, vol. 1, no. 7, p. 0168.

  21. Gamfeldt, L., Hillebrand, H., and Jonsson, P.R., Multiple functions increase the importance of biodiversity for overall ecosystem functioning, Ecology, 2008, vol. 89, no. 5, pp. 1223–1231.

    Article  PubMed  Google Scholar 

  22. Gómez-Baggethun, E., De Groot, R., Lomas, P.L., and Montes, C., The history of ecosystem services in economic theory and practice: from early notions to markets and payment schemes, Ecol. Econ., 2010, vol. 69, no. 6, pp. 1209–1218.

    Article  Google Scholar 

  23. Grime, J.P., Benefits of plant diversity to ecosystems: immediate, filter and founder effects, J. Ecol., 1998, vol. 86, no. 6, pp. 902–910.

    Article  Google Scholar 

  24. Gundersen, V.S. and Frivold, L.H., Public preferences for forest structures: a review of quantitative surveys from Finland, Norway and Sweden, Urban For. Urban Greening, 2008, vol. 7, no. 4, pp. 241–258.

    Article  Google Scholar 

  25. Haines-Young, R. and Potschin, M., The links between biodiversity, ecosystem services and human well-being, in Ecosystem Ecology: A New Synthesis, Cambridge: Cambridge Univ. Press, 2010, vol. 1, pp. 110–139.

    Google Scholar 

  26. Harrison, P.A., Berry, P.M., Simpson, G., Haslett, J.R., Blicharska, M., Bucur, M., Dunford, R., Egoh, B., Garcia-Llorente, M., Geamănă, N., Geertsema, W., Lommelen, E., Meiresonne, L., and Turkelboom, F., Linkages between biodiversity attributes and ecosystem services: a systematic review, Ecosyst. Serv., 2014, vol. 9, pp. 191–203.

    Article  Google Scholar 

  27. Hautier, Y., Isbell, F., Borer, E.T., Seabloom, E.W., Harpole, W.S., Lind, E.M., MacDougall, A.S., Stevens, C.J., Adler, P.B., Alberti, J., Bakker, J.D., Brudvig, L.A., Buckley, Y.M., Cadotte, M., Caldeira, M.C., et al., Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality, Nat. Ecol. Evol., 2018, vol. 2, no. 1, pp. 50–56.

    Article  PubMed  Google Scholar 

  28. Hector, A. and Bagchi, R., Biodiversity and ecosystem multifunctionality, Nature, 2007, vol. 448, no. 7150, pp. 188–190.

    Article  CAS  PubMed  Google Scholar 

  29. Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J., and Wardle, D.A., Effects of biodiversity on ecosystem functioning: a consensus of current knowledge, Ecol. Monogr., 2005, vol. 75, no. 1, pp. 3–35.

    Article  Google Scholar 

  30. Isaev, A.S., Sukhovol’skii, V.G., Khlebopros, R.G., Buzykin, A.I., and Ovchinnikova, T.M., Modeling the aforestation process: a phenomenological approach, Lesovedenie, 2005, no. 1, pp. 3–11.

  31. Isaev, A.S., Sukhovol’skii, V.G., and Ovchinnikova, T.M., Phenomenological models of growth of forest stands, Zh. Obshch. Biol., 2008a, vol. 69, no. 1, pp. 3–9.

    CAS  PubMed  Google Scholar 

  32. Isaev, A.S., Sukhovol’skii, V.G., Buzykin, A.I., and Ovchinnikova, T.M., Succession processes in forest communities: models of phase transitions, Khvoinye Lesa Boreal’noi Zony, 2008b, vol. 25, nos. 1–2, pp. 9–15.

    Google Scholar 

  33. Isaev, A.S., Sukhovolsky, V.G., Tarasova, O.V., Palnikova, E.N., and Kovalev, A.V., Forest Insect Population Dynamics, Outbreaks, and Global Warming Effects, Chichester: Wiley, 2017.

    Book  Google Scholar 

  34. Jenny, H., Role of the plant factor in the pedogenic functions, Ecology, 1958, vol. 39, no. 1, pp. 5–16.

    Article  Google Scholar 

  35. Karpachevskii, L.O., Pestrota pochvennogo pokrova v lesnom biogeotsenoze (Color Diversity of Soil Cover in Forest Biogeocenosis), Moscow: Mosk. Gos. Univ., 1977.

  36. Khanina, L.G., Bobrovsky, M.V., Komarov, A.S., and Mikhajlov, A.V., Modeling dynamics of forest ground vegetation diversity under different forest management regimes, For. Ecol. Manage., 2007, vol. 248, pp. 80–94.

    Article  Google Scholar 

  37. Komarov, A.S., Chertov, O.G., Zudin, S.L., Nadporozhskaya, M.A., Mikhailov, A.V., Bykhovets, S.S., Zudina, E.V., and Zoubkova, E.V., EFIMOD 2—A model of growth and elements cycling of boreal forest ecosystems, Ecol. Model., 2003, vol. 170, pp. 373–392.

    Article  CAS  Google Scholar 

  38. Kondrat’ev, S.A., Formirovanie vneshnei nagruzki na vodoemy: problemy modelirovaniya (Modeling of External Burden on Water Reservoirs), St. Petersburg: Nauka, 2007.

  39. Kurttila, M., Pukkala, T., and Miina, J., Synergies and trade-offs in the production of NWFPs predicted in boreal forests, Forests, 2018, vol. 9, no. 7, pp. 400–417.

    Article  Google Scholar 

  40. Kurz, W.A., Dymond, C.C., White, T.M., Stinson, G., Shaw, C.H., Rampley, G.J., Smyth, C.E., Simpson, B.N., Neilson, E.T., Trofymow, J.A., Metsaranta, J.M., and Apps, M.J., CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards, Ecol. Model., 2009, vol. 220, no. 4, pp. 480–504.

    Article  Google Scholar 

  41. Kuuluvainen, T., Tahvonen, O., and Aakala, T., Even-aged and uneven-aged forest management in boreal Fennoscandia: a review, Ambio, 2012, vol. 41, no. 7, pp. 720–737.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lee, H. and Lautenbach, S., A quantitative review of relationships between ecosystem services, Ecol. Indic., 2016, vol. 66, pp. 340–351.

    Article  Google Scholar 

  43. Louman, B., Cifuentes, M., and Chacón, M., REDD+, RFM, development, and carbon markets, Forests, 2011, vol. 2, no. 1, pp. 357–372.

    Article  Google Scholar 

  44. Mace, G.M., Norris, K., and Fitter, A.H., Biodiversity and ecosystem services: a multilayered relationship, Trends Ecol. Evol., 2012, vol. 27, no. 1, pp. 19–26.

    Article  PubMed  Google Scholar 

  45. Maes, J., Liquete, C., Teller, A., Erhard, M., Paracchini, M.L., Barredo, J.I., and Meiner, A., An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020, Ecosyst. Serv., 2016, vol. 17, pp. 14–23.

    Article  Google Scholar 

  46. Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., and García-Palacios, P., Plant species richness and ecosystem multifunctionality in global drylands, Science, 2012, vol. 335, no. 6065, pp. 214–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Manning, P., Taylor, G., and Hanley, M.E., Bioenergy, food production and biodiversity—an unlikely alliance? Global Change Biol. Bioenergy, 2015, vol. 7, no. 4, pp. 570–576.

    Article  Google Scholar 

  48. Manning, P., Plas, F., Soliveres, S., Allan, E., Maestre, F.T., Mace, G., Whittingham, M.J., and Fischer, M., Redefining ecosystem multifunctionality, Nat. Ecol. Evol., 2018, vol. 2, no. 3, pp. 427–436.

    Article  PubMed  Google Scholar 

  49. Maskell, L.C., Crowe, A., Dunbar, M.J., Emmett, B., Henrys, P., Keith, A.M., Norton, L.R., Scholefield, P., Clark, D.B., Simpson, I.C., and Smart, S.M., Exploring the ecological constraints to multiple ecosystem service delivery and biodiversity, J. Appl. Ecol., 2013, vol. 50, no. 3, pp. 561–571.

    Article  Google Scholar 

  50. McGuire, A.D., Sitch, S., Clein, J.S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D.W., Meier, R.A., Melillo, J.M., Moore, B., Prentice, I.C., Ramankutty, N., et al., Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models, Global Biogeochem. Cycles, 2001, vol. 15, no. 1, pp. 183–206.

    Article  CAS  Google Scholar 

  51. Millennium Ecosystem Assessment. Ecosystems and Human Wellbeing: Synthesis, Washington: Island Press, 2005. http://www.millenniumassessment.org/en/Reports.aspx#.

  52. Mokany, K., Ash, J., and Roxburgh, S., Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland, J. Ecol., 2008, vol. 96, no. 5, pp. 884–893.

    Article  Google Scholar 

  53. Monitoring biologicheskogo raznoobraziya lesov Rossii: metodologiya i metody (Methods of Monitoring of Biological Diversity of Russian Forests), Isaev, A.S., Ed., Moscow: Nauka, 2008.

    Google Scholar 

  54. Mouchet, M.A., Lamarque, P., Martín-López, B., Crouzat, E., Gos, P., Byczek, C., and Lavorel, S., An interdisciplinary methodological guide for quantifying associations between ecosystem services, Global Environ. Change, 2014, vol. 28, pp. 298–308.

    Article  Google Scholar 

  55. Mouchet, M., Paracchini, M.L., Schulp, C.J.E., Stürck, J., Verkerk, P.J., Verburg, P.H., and Lavorel, S., Bundles of ecosystem (dis)services and multifunctionality across European landscapes, Ecol. Indic., 2017, vol. 73, pp. 23–28.

    Article  Google Scholar 

  56. Natsional’naya Strategiya sokhraneniya bioraznoobraziya Rossii (National Strategy of Conservation of Biological Diversity in Russia), Moscow: Minist. Prirod. Resur. Ross. Fed., 2001.

  57. Odum, E.P., Basic Ecology, Philadelphia: Saunders, 1983.

    Google Scholar 

  58. Oliver, T.H., Heard, M.S., Isaac, N.J., Roy, D.B., Procter, D., Eigenbrod, F., and Proença, V., Biodiversity and resilience of ecosystem functions, Trends Ecol. Evol., 2015, vol. 30, no. 11, pp. 673–684.

    Article  PubMed  Google Scholar 

  59. Orlova, M.A., Elementary unit of forest biogeocenotic cover for assessment of ecosystem functions of forests, Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, 2013, no. 6, pp. 126–132.

  60. Osnovy gosudarstvennoi politiki v oblasti obespecheniya khimicheskoi i biologicheskoi bezopasnosti Rossiiskoi Federatsii na period do 2015 goda i dal’neishuyu perspektivu, Utverzhdeno Ukazom Prezidenta Rossiiskoi Federatsii no. 97 ot 11 marta 2019 g. (Principles of the State Policy in the Field of Chemical and Biological Safety of Russian Federation until 20125 and Further Perspective, Approved by the Decree of the President of the Russian Federation No. 97 of March 11, 2019), Moscow, 2019.

  61. Our Life Insurance, Our Natural Capital: An EU Biodiversity Strategy to 2020, Brussels: Eur. Com., 2011, p. 16.

  62. Puydarieux, P. and Beyou, W., L’Évaluation Française des Écosystèmes et des Services Écosystémique—Cadre Conceptuel, Paris: Minist. Environ. Fondation Rech. Biodiversité, 2017. https://www.ecologique-solidaire.gouv.fr/ sites/default/files/Thema%20-%20Efese%20-%20Le% 20cadre%20conceptuel.pdf. Accessed December 3, 2018.

  63. Ramenskii, L.G., Vvedenie v kompleksnoe pochvenno-geobotanicheskoe issledovanie zemel’ (Introduction into Complex Soil-Geobotanical Study of Lands), Leningrad: Sel’khozgiz, 1938.

  64. Ratcliffe, S., Liebergesell, M., Ruiz-Benito, P., Madrigal González, J., Muñoz Castañeda, J.M., Kändler, G., Lehtonen, A., Dahlgren, J., Kattge, J., Peñuelas, M.J., Zavala, A., and Wirth, C., Modes of functional biodiversity control on tree productivity across the European continent, Global Ecol. Biogeogr., 2016, vol. 25, no. 3, pp. 251–262.

    Article  Google Scholar 

  65. Raudsepp-Hearne, C., Peterson, G.D., and Bennett, E.M., Ecosystem service bundles for analyzing tradeoffs in diverse landscapes, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 11, pp. 5242–5247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Reyer, C., Lasch-Born, P., Suckow, F., Gutsch, M., Murawski, A., and Pilz, T., Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide, Ann. For. Sci., 2014, vol. 71, no. 2, pp. 211–225.

    Article  Google Scholar 

  67. Roces-Díaz, J.V., Vayreda, J., Banqué-Casanovas, M., Díaz-Varela, E., Bonet, J.A., Brotons, L., de-Miguel, S., Herrando, S., and Martínez-Vilalta, J., The spatial level of analysis affects the patterns of forest ecosystem services supply and their relationships, Sci. Total Environ., 2018, vol. 626, pp. 1270–1283.

    Article  PubMed  CAS  Google Scholar 

  68. Rodríguez, J.P., Beard, Jr., T.D., Bennett, E.M., Cumming, G.S., Cork, S.J., Agard, J., Dobson, A.P., and Peterson, G.D., Trade-offs across space, time, and ecosystem services, Ecol. Soc., 2006, vol. 11, no. 1, p. 28.

    Article  Google Scholar 

  69. Rossiiskii statisticheskii ezhegodnik, 2018 (Russian Statistical Yearbook, 2018), Moscow: Rosstat, 2018.

  70. Schuldt, A., Assmann, T., Brezzi, M., Buscot, F., Eichenberg, D., Gutknecht, J., Härdtle, W., He, J.-S., Klein, A.-M., Kühn, P., Liu, X., Ma, K., Niklaus, A.P., Pietsch, K.A., Purahong, W., et al., Biodiversity across trophic levels drives multifunctionality in highly diverse forests, Nat. Commun., 2018, vol. 9, no. 1, pp. 2989–2999.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Science for Environment Policy. Ecosystem Services and Biodiversity. In-Depth Report 11 Produced for the European Commission, Bristol: DG Environ. Sci. Commun. Unit, 2015, p. 32.

  72. Seidl, R., Rammer, W., Scheller, R.M., and Spies, T.A., An individual-based process model to simulate landscape-scale forest ecosystem dynamics, Ecol. Model., 2012, vol. 231, pp. 87–100.

    Article  Google Scholar 

  73. Smirnova, O.V., Khanina, L.G., and Smirnov, V.E., Ecological-cenotic groups in the vegetation cover of the forest belt of Eastern Europe, in Vostochno-Evropeiskie lesa (istoriya v golotsene i sovremennost’) (East European Forests: History in Holocene and Present), Moscow: Nauka, 2004, book 1, pp. 165–175.

  74. Soliveres, S., van der Plas, F., Manning, P., Prati, D., Gossner, M.M., Renner, S.C., and Birkhofer, K., Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality, Nature, 2016, vol. 536, no. 7617, pp. 456–459.

    Article  CAS  PubMed  Google Scholar 

  75. Strategiya razvitiya lesnogo kompleksa Rossiiskoi Federatsii do 2030 goda, Utverzhdeno rasporyazheniem Predsedatelya Pravitel’stva Rossiiskoi Federatsii no. 1989-r ot 20 sentyabrya 2018 g. (The Strategy of Development of Forest Complex of the Russian Federation until 2030 No. 1989-r of September 20, 2018), Moscow, 2018.

  76. Striganova, B.R., Pitanie pochvennykh saprofagov (Nutrition of Soil Saprophages), Moscow: Nauka, 1980.

  77. Teben’kova, D.N., Lukina, N.V., Fomich, A.F., Orlova, M.A., and Gagarin, Yu.N., Forest soils and forest cultures: a comparison of acidity and fertility, Materialy Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem, posvyashchennoi 60-letiya Instituta lesa Karel’skogo Nauchnogo Tsentra, RAN “Boreal’nye lesa: sostoyanie, dinamika, ekosistemnye uslugi,” Petrozavodsk, 11–15 sentyabrya 2017 g., Tezisy dokladov (Proc. All-Russ. Sci. Conf. with Int. Participation Dedicated to the 60th Anniversary of the Institute of Forest, Karelian Scientific Center, Russian Academy of Sciences “Boreal Forests: State, Dynamics, and Ecosystem Services,” Petrozavodsk, September 11–15, 2017, Abstracts of Papers), Petrozavodsk: Karel. Nauchn. Tsentr, Ross. Akad. Nauk, 2017, p. 292.

  78. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature. A Synthesis of the Approach, Conclusions and Recommendations of TEEB, Malta: Progress Press, 2010.

  79. The International Union for Conservation of Nature’s Red List of Threatened Species. https://www.iucnredlist.org/. Accessed December 3, 2018.

  80. Treseder, K.K. and Lennon, J.T., Fungal traits that drive ecosystem dynamics on land, Microbiol. Mol. Biol. Rev., 2015, vol. 79, pp. 243–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Turner, K.G. Odgaard, M.V., Bocher, P.K., Dalgaard, T., and Svenning, J.C., Bundling ecosystem services in Denmark: trade-offs and synergies in a cultural landscape, Landscape Urban Plann., 2014, vol. 125, pp. 89–104.

    Article  Google Scholar 

  82. Vallet, A. Locatelli, B., Levrel, H., Wunder, S., Seppelt, R., Scholes, R.J., and Oszwald, J., Relationships between ecosystem services: comparing methods for assessing tradeoffs and synergies, Ecol. Econ., 2018, vol. 150, pp. 96–106.

    Article  Google Scholar 

  83. van der Plas F., Ratcliffe, S., Ruiz-Benito, P., Scherer-Lorenzen, M., Verheyen, K., Wirth, C., Zavala, M.A., Ampoorter, E., Baeten, L., Barbaro, L., Bastias, C., Bauhus, J., Benavides, R., Benneter, A., Bonal, D., et al., Continental mapping of forest ecosystem functions reveals a high but unrealized potential for forest multifunctionality, Ecol. Lett., 2018, vol. 21, no. 1, pp. 31–42.

    Article  PubMed  Google Scholar 

  84. Viglizzo, E.F. and Frank, F.C., Land-use options for Del Plata Basin in South America: tradeoffs analysis based on ecosystem service provision, Ecol. Econ., 2006, vol. 57, no. 1, pp. 140–151.

    Article  Google Scholar 

  85. Wikström, P., Edenius, L., Elfving, B., Eriksson, L.O., Lämås, T., Sonesson, J., Karin, Ö., Wallerman, J., Waller, C., and Klintebäck, F., The Heureka forestry decision support system: an overview, Int. J. Math. Comput. For. Nat.-Resour. Sci., 2011, vol. 3, no. 2, pp. 87–95.

    Google Scholar 

  86. Yachi, S. and Loreau, M., Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, no. 4, pp. 1463–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yatso, K.N. and Lilleskov, E.A., Effects of tree leaf litter, deer fecal pellets, and soil properties on growth of an introduced earthworm (Lumbricus terrestris): implications for invasion dynamics, Soil Biol. Biochem., 2016, vol. 94, pp. 181–190.

    Article  CAS  Google Scholar 

  88. Zamolodchikov, D.G., Grabovskii, V.I., and Kraev, G.N., A twenty year retrospective on the forest carbon dynamics in Russia, Contemp. Probl. Ecol., 2011, vol. 4, no. 7, pp. 706–715.

    Article  Google Scholar 

Download references

Funding

This work was conducted as a part of the project FP7 ERA–Net Sumforest-POLYFORES and supported by the Ministry of Science and Education of the Russian Federation, project. no. RFMEFI61618X0101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Teben’kova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by E. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teben’kova, D.N., Lukina, N.V., Chumachenko, S.I. et al. Multifunctionality and Biodiversity of Forest Ecosystems. Contemp. Probl. Ecol. 13, 709–719 (2020). https://doi.org/10.1134/S1995425520070136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425520070136

Keywords:

Navigation