Skip to main content
Log in

Phase Formation in the SHS of a Ti–B Mixture with the Addition of Si3N4

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The structure and phase composition of a material obtained via SHS in the combustion of a 87% Ti + 13% B powder mixture with the addition of Si3N4 is under study. The phase formation mechanism in this system is discussed. It is established that the material contains 64% of the TiB phase with an orthorhombic structure and 36% of the solid boron solution in titanium (\(\alpha\)-Ti[B]). The boron content in \(\alpha\)-Ti significantly exceeds its equilibrium content according to a state diagram. In the case of combustion of an 87% Ti + 13% B mixture with the addition of 5% Si3N4, the finite product contains TiB, \(\alpha\)-Ti[B], TiB2, and Ti5Si3 phase. The TiB phase is present in the form of two modifications: orthorhombic and cubic. The completeness of a structural transition of the cubic modification of TiB into an orthorhombic one is determined by the cooling rate of a sample. It is assumed that the combustion of the mixture with the addition of Si3N4 forms the dispersed discharges of TiN, which are the crystallization centers of cubic TiB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. V. N. Chuvil’deev, V. I. Kopylov, A. V. Nokhrin, et al., “Study of Mechanical Properties and Corrosive Resistance of Ultrafine-Grained Alpha-Titanium Alloy Ti–5Al–2V," J. Alloys Compd. 723, 354–367 (2017).

  2. M. Łȩpicka, M. Gra̧dzka-Dahlke, and A. Sobolewski, “The Effect of Anodizing Conditions on the Corrosion Resistance of Ti6Al4V Titanium Alloy," Mater. Test. 57 (5), 393–397 (2015).

  3. S. E. Haghighi, H. B. Lu, G. Y. Jian, et al., “Effect of Alpha″ Martensite on the Microstructure and Mechanical Properties of Beta-Type Ti–Fe–Ta Alloys," Mater. Des. 76, 47–54 (2015).

  4. Y. B. Hu, B. Zhao, F. D. Ning, et al., “In-situ Ultrafine Three-Dimensional Quasi-Continuous Network Microstructural TiB Reinforced Titanium Matrix Composites Fabrication Using Laser Engineered Net Shaping," Mater. Lett. 195, 116–119 (2017).

  5. A. S. Konstantinov, P. M. Bazhin, A. M. Stolin, et al., “Ti–B-Based Composite Materials: Properties, Basic Fabrication Methods, and Fields of Application (Review)," Composites. Pt A 108, 79–88 (2018).

  6. P. M. Bazhin, A. M. Stolin, A. S. Konstantinov, et al., “Ceramic Ti–B Composites Synthesized by Combustion Followed by High-Temperature Deformation," Materials 9 (12), 79–88 (2016).

  7. P. M. Bazhin, A. M. Stolin, M. I. Alymov, and A. P. Chizhikov, “Peculiarities of the Production of Elongated Items from a Ceramic Material with Nanoscale Structure by the SHS Extrusion Method," Perspekt. Mat., No. 11, 73–81 (2014) [Inorg. Mater.: Appl. Res. 6 (2), 187–192 (2015)].

  8. X. Zhang, Q. Xu, J. Han, and V. L. Kvanin, “Self-Propagating High Temperature Combustion Synthesis of TiB/Ti Composites," Mater. Sci. Eng. A, Nos. 1–2, 41–46 (2003).

  9. V. A. Shcherbakov and A. N. Gryadunov, “Production and Properties of Ceramic B4C–TiB2 and B4C–ZrB2 Composites," Fund. Issled., No. 10-1, 62–66 (2017).

  10. State Diagrams of Double Metallic Systems: Manual, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1996) [in Russian].

  11. V. I. Ponomarev and D. Yu. Kovalev, “Time-Resolved X-ray Diffraction during Combustion in the Ti–C–B System," Int. J. Self-Propag. High-Temp. Synth. 14 (2), 111–117 (2005).

  12. P. Ehrlich, “Binary Systems of Titanium with Nitrogen, Carbon, Boron, and Beryllium," Inorg. Chem. 259, 1–41 (1949).

  13. L. Brewer, D. L. Sawyer, D. H. Templeton, and C. H. Dauben, “A Study of the Refractory Borides," J. Am. Ceram. Soc. 34 (6), 173–179 (1951).

  14. B. F. Decker and J. S. Kasper, “The Crystal Structure of TiB," Acta Cryst. 7 (1), 77–80 (1954).

  15. S. Madtha, C. Lee, and K. S. R. Chandran, “Physical and Mechanical Properties of Nanostructured Titanium Boride (TiB)," J. Am. Ceram. Soc. 91 (4), 1319–1321 (2008).

  16. G. Cao and L. Geng, and M. Naka, “Elastic Properties of Titanium Monoboride Measured by Nanoindentation," J. Am. Ceram. Soc. 89, 3836–3838 (2006).

  17. J. D. Hu, X. F. Dong, and S. Tosto, “Microstructure of Face Centered Cubic (fcc) TiB Powder Synthesized by Boronizing of Ti Powder," J. Am. Ceram. Soc. 95 (7), 2089–2092 (2012).

  18. B. Post and F. W. Glaser, “Borides of Some Transition Metals," J. Chem. Phys. 20, 1050–1051 (1952).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Kovalev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, D.Y., Konstantinov, A.S., Konovalikhin, S.V. et al. Phase Formation in the SHS of a Ti–B Mixture with the Addition of Si3N4 . Combust Explos Shock Waves 56, 648–654 (2020). https://doi.org/10.1134/S0010508220060040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508220060040

Keywords

Navigation