Skip to main content
Log in

Macroscopic Regulation of Hierarchical Nanostructures in Liquid-crystalline Block Copolymers towards Functional Materials

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The great potential of liquid-crystalline block copolymers (LCBCs) containing photoresponsive mesogens toward novel applications in photonics and nanotechnology has been attracting increasing attention, due to the combination of the inherent property of microphase separation of block copolymers and the hierarchically-assembled structures of liquid-crystalline polymers (LCPs). The periodically ordered nanostructures in bulk film of LCBCs can be acquired by supramolecular cooperative motion, derived from the interaction between liquid-crystalline elastic deformation and microphase separation, which are able to improve physical properties of polymer film toward advanced functional applications. Moreover, various micro/nano-patterned structures have been fabricated via light manipulation of photoresponsive LCBCs with good reproducibility and mass production. Thanks to recent developments in synthesis and polymerization techniques, diverse azobenzene-containing LCBCs have been designed, resulting in the creation of a wide variety of novel functions. This review illustrates recent progresses in macroscopic regulation of hierarchical nanostructures in LCBCs towards functional materials. The existing challenges are also discussed, showing perspectives for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fasolka, M. J.; Mayes, A. M. Block copolymer thin films: physics and applications. Ann. Rev. Mater. Res. 2001, 31, 323–355.

    CAS  Google Scholar 

  2. Bates, F. S.; Fredrickson, G. H. Block copolymers-designer soft materials. Phys. Today 1999, 52, 32–38.

    CAS  Google Scholar 

  3. Schacher, F.; Rupar, P.; Manners, I. Functional block copolymers: nanostructured materials with emerging applications. Angew. Chem. Int. Ed. 2012, 51, 7898–7921.

    CAS  Google Scholar 

  4. Sun, Z.; Chen, Z.; Zhang, W.; Choi, J.; Huang, C.; Jeong, G.; Coughlin, E. B.; Hsu, Y.; Yang, Z.; Lee, K.; Kuo, D.; Xiao, C.; Russell, T. P. Directed self-assembly of poly(2-vinylpyridine)-b-polystyrene-b-poly(2-vinylpyridine) triblock copolymer with sub-15 nm spacing line patterns using a nanoimprinted photoresist template. Adv. Mater. 2015, 27, 4364–4370.

    CAS  PubMed  Google Scholar 

  5. Kim, J.; Yang, S.; Lee, Y.; Kim, Y. Functional nanomaterials based on block copolymer self-assembly. Prog. Polym. Sci. 2010, 35, 1325–1349.

    CAS  Google Scholar 

  6. Metwalli, E.; Korstgens, V.; Schlage, K.; Meier, R.; Kaune, G.; Buffet, A.; Couet, S.; Roth, S. V.; Rohlsberger, R.; Muller-Buschbaum, P. Cobalt nanoparticles growth on a block copolymer thin film: a time-resolved GISAXS study. Langmuir 2013, 29, 6331–6340.

    CAS  PubMed  Google Scholar 

  7. Roth, S. V.; Santoro, G.; Risch, J. F. H.; Yu, S.; Schwartzkopf, M.; Boese, T.; Dohrmann, R.; Zhang, P.; Besner, B.; Bremer, P.; Rukser, D.; Rubhausen, M. A.; Terrill, N. J.; Staniec, P. A.; Yao, Y.; Metwalli, E.; Muller-Buschbaum, P. Patterned diblock copolymer thin films as templates for advanced anisotropic metal nanostructures. ACS Appl. Mater. Interfaces 2015, 7, 12470–12477.

    CAS  PubMed  Google Scholar 

  8. Lu, X.; Li, J.; Zhu, D.; Xu, M.; Li, W.; Lu, Q. Double-helical nanostructures with controllable handedness in bulk diblock copolymers. Angew. Chem. Int. Ed. 2018, 57, 15148–15152.

    CAS  Google Scholar 

  9. Seki, T. Light-directed alignment, surface morphing and related processes: recent trends. J. Mater. Chem. C 2016, 4, 7895–7910.

    CAS  Google Scholar 

  10. Nagano, S. Inducing planar orientation in side-chain liquid-crystalline polymer systems via interfacial control. Chem. Rec. 2016, 16, 378–392.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fukuhara, K.; Fujii, Y.; Nagashima, Y.; Hara, M.; Nagano, S.; Seki, T. Liquid-crystalline polymer and block copolymer domain alignment controlled by free-surface segregation. Angew. Chem. Int. Ed. 2013, 52, 5988–5991.

    CAS  Google Scholar 

  12. Fukuhara, K.; Nagano, S.; Hara, M.; Seki, T. Free-surface molecular command systems for photoalignment of liquid crystalline materials. Nat. Commun. 2014, 5, 3320.

    PubMed  PubMed Central  Google Scholar 

  13. Yu, H. Photoresponsive liquid-crystalline block copolymers: from photonics to nanotechnology. Prog. Polym. Sci. 2014, 39, 781–815.

    CAS  Google Scholar 

  14. Yu, H. Recent advances in photoresponsive liquid-crystalline polymers containing azobenzene chromophores. J. Mater. Chem. C 2014, 2, 3047–3054.

    CAS  Google Scholar 

  15. Mao, G.; Wang, J.; Clingman, S. R.; Ober, C. K.; Chen, J. T.; Thomas, E. L. Molecular design, synthesis, and characterization of liquid crystal-coil diblock copolymers with azobenzene side groups. Macromolecules 1997, 30, 2556–2567.

    CAS  Google Scholar 

  16. Tian, Y.; Watanabe, K.; Kong, X.; Abe, J.; Iyoda, T. Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties. Macromolecules 2002, 35, 3739–3747.

    CAS  Google Scholar 

  17. Asaoka, S.; Uekusa, T.; Tokimori, H.; Komura, M.; Iyoda, T.; Yamada, T.; Yoshida, H. Normally oriented cylindrical nanostructures in amphiphilic PEO-LC diblock copolymers films. Macromolecules 2011, 44, 7645–7658.

    CAS  Google Scholar 

  18. Yu, H.; Iyoda, T.; Ikeda, T. Photoinduced alignment of nanocylinders by supramolecular cooperative motions. J. Am. Chem. Soc. 2006, 128, 11010–11011.

    CAS  PubMed  Google Scholar 

  19. Yu, H.; Li, J.; Ikeda, T.; Iyoda, T. Macroscopic parallel nanocylinder array fabrication using a simple rubbing technique. Adv. Mater. 2006, 18, 2213–2215.

    CAS  Google Scholar 

  20. Yu, H.; Kobayashi, T.; Hu, G. Photocontrolled microphase separation in a nematic liquid-crystalline diblock copolymer. Polymer 2011, 52, 1554–1561.

    CAS  Google Scholar 

  21. Nagano, S.; Koizuka, Y.; Murase, T.; Sano, M.; Shinohara, Y.; Amemiya, Y.; Seki, T. Synergy effect on morphology switching: real-time observation of photo-orientation of microphase separation in a block copolymer. Angew. Chem. Int. Ed. 2012, 51, 5884–5888.

    CAS  Google Scholar 

  22. Sano, M.; Hara, M.; Nagano, S.; Shinohara, Y.; Amemiya, Y.; Seki, T. New aspects for the hierarchical cooperative motions in photoalignment process of liquid crystalline block copolymer films. Macromolecules 2015, 48, 2217–2223.

    CAS  Google Scholar 

  23. Sano, M.; Shan, F.; Hara, M.; Nagano, S.; Shinohara, Y.; Amemiya, Y.; Seki, T. Dynamic photoinduced realignment processes in photoresponsive block copolymer films: effects of the chain length and block copolymer architecture. Soft Matter 2015, 11, 5918–5925.

    CAS  PubMed  Google Scholar 

  24. Cai, F.; Zheng, F.; Lu, X.; Lu, Q. Control of the alignment of liquid crystal molecules on a sequence-polymerized film by surface migration and polarized light irradiation. Polym. Chem. 2017, 8, 7316–7324.

    CAS  Google Scholar 

  25. Yu, H.; Ikeda, T. Photocontrollable liquid-crystalline actuators. Adv. Mater. 2011, 23, 2149–2180.

    CAS  PubMed  Google Scholar 

  26. Ikeda, T. Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem. 2003, 13, 2037–2057.

    CAS  Google Scholar 

  27. Yu, H.; Kobayashi, T.; Yang, H. Liquid-crystalline ordering helps block copolymer self-assembly. Adv. Mater. 2011, 23, 3337–3344.

    CAS  PubMed  Google Scholar 

  28. Barrett, C. J.; Yager, K. G.; Mamiya, J.; Ikeda, T. Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter 2007, 3, 1249–1261.

    CAS  PubMed  Google Scholar 

  29. Han, D.; Tong, X.; Zhao, Y. Block copolymers comprising p-conjugated and liquid crystalline subunits: induction of macroscopic nanodomain orientation. Angew. Chem. Int. Ed. 2010, 49, 9162–9165.

    CAS  Google Scholar 

  30. Intelligent stimuli responsive materials: from well-defined nanostructures to applications. Li, Q. Ed. John Wiley & Sons, Hoboken, NJ, 2013.

    Google Scholar 

  31. Zheng, Z.; Li, Y.; Bisoyi, H.; Wang, L.; Bunning, T.; Li, Q. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 2016, 531, 352–356.

    CAS  PubMed  Google Scholar 

  32. Bisoyi, H.; Li, Q. Light-directed dynamic chirality inversion in functional self-organized helical superstructures. Angew. Chem. Int. Ed. 2016, 55, 2994–3010.

    CAS  Google Scholar 

  33. Zhao, Y.; Tong, X.; Zhao, Y. Photoinduced microphase separation in block copolymers: exploring shape incompatibility of mesogenic side groups. Macromol. Rapid Commun. 2010, 31, 986–990.

    CAS  PubMed  Google Scholar 

  34. Bisoyi, H.; Li, Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem. Rev. 2016, 116, 15089–15166.

    CAS  PubMed  Google Scholar 

  35. Hu, J.; Li, X.; Ni, Y.; Ma S.; Yu, H. A programmable and biomimetic photo-actuator: a composite of a photo-liquefiable azobenzene derivative and commercial plastic film. J. Mater. Chem. C 2018, 6, 10815–10821.

    CAS  Google Scholar 

  36. Hoshino, M.; Uchida, E.; Norikane, Y.; Azumi, R.; Nozawa, S.; Tomita, A.; Sato, T.; Adachi, S.; Koshihara, S. Crystal melting by light: X-ray crystal structure analysis of an azo crystal showing photoinduced crystal-melt transition. J. Am. Chem. Soc. 2014, 136, 9158–9164.

    CAS  PubMed  Google Scholar 

  37. Han, G. D.; Park, S. S.; Liu, Y.; Zhitomirsky, D.; Cho, E.; Dinca, M.; Grossman, J. C. Photon energy storage materials with high energy densities based on diacetylene-azobenzene derivatives. J. Mater. Chem. A 2016, 4, 16157–16165.

    CAS  Google Scholar 

  38. Han, G. D.; Deru, J. H.; Cho, E. N.; Grossman, J. C. Optically-regulated thermal energy storage in diverse organic phase-change materials. Chem. Commun. 2018, 54, 10722–10725.

    CAS  Google Scholar 

  39. Seki, T. Dynamic photoresponsive functions in organized layer systems comprised of azobenzene-containing polymers. Polym. J. 2004, 36, 435–454.

    CAS  Google Scholar 

  40. Seki, T. Smart photoresponsive polymer systems organized in two dimensions. Bull. Chem. Soc. Jpn. 2007, 80, 2084–2109.

    CAS  Google Scholar 

  41. Zhao, Y.; He, J. Azobenzene-containing block copolymers: the inter-play of light and morphology enables new functions. Soft Matter 2009, 5, 2686–2693.

    CAS  Google Scholar 

  42. Kawatsuki, N. Photoalignment and photoinduced molecular reorientation of photosensitive materials. Chem. Lett. 2011, 40, 548–554.

    CAS  Google Scholar 

  43. Wang, Y.; Urbas, A.; Li, Q. Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches. J. Am. Chem. Soc. 2012, 134, 3342–3345.

    CAS  PubMed  Google Scholar 

  44. Yun, X.; Tang, B.; Xiong, Z.; Wang, X. Understanding self-assembly, colloidal behavior and rheological properties of graphene derivatives for high-performance supercapacitor fabrication. Chinese J. Polym. Sci. 2020, 38, 423–434.

    CAS  Google Scholar 

  45. Wang, Y.; Urbas, A.; Li, Q. Light-driven chiral molecular switches or motors in liquid crystals. Adv. Mater. 2012, 24, 1926–1945.

    CAS  PubMed  Google Scholar 

  46. Li, J.; Blake, J.; Delaney, C. Template-and vacuum-ultraviolet-assisted fabrication of an Ag-nanoparticle array on flexible and rigid substrates. Adv. Mater. 2007, 19, 1267–1271.

    CAS  Google Scholar 

  47. Li, J.; Kamata, K.; Komura, M.; Yamada, T.; Yoshida, H.; Iyoda, T. Anisotropic ion conductivity in liquid crystalline diblock copolymer membranes with perpendicularly oriented PEO cylindrical domains. Macromolecules 2007, 40, 8125–8128.

    CAS  Google Scholar 

  48. Watanabe, S.; Fujiwara, R.; Hada, M.; Okazaki, Y.; Iyoda, T. Site-specific recognition of nanophase-separated surfaces of amphiphilic block copolymers by hydrophilic and hydrophobic gold nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 1120–1123.

    CAS  Google Scholar 

  49. Darling, S. B. Directing the self-assembly of block copolymers. Prog. Polym. Sci. 2007, 32, 1152–1204.

    CAS  Google Scholar 

  50. Lodge, T. P. Block copolymers: past successes and future challenges. Macromol. Chem. Phys. 2003, 204, 265–273.

    CAS  Google Scholar 

  51. Hawker, C. J.; Russell, T. P. Block copolymer lithography: merging “bottom-up” with “top-down” processes. MRS Bull. 2005, 30, 952–965.

    CAS  Google Scholar 

  52. Ruzette, A. V.; Leibler, A. L. Block copolymers in tomorrow’s plastics. Nat. Mater. 2005, 4, 19–31.

    CAS  PubMed  Google Scholar 

  53. Wu, J.; Yi, Z.; Lu, X.; Chen, S.; Lu, Q. Formation and properties of liquid crystalline supramolecules with anisotropic fluorescence emission. Polym. Chem. 2014, 5, 2567–2573.

    CAS  Google Scholar 

  54. Yu, H.; Asaoka, A.; Shishido, A.; Iyoda, T.; Ikeda T. Photoinduced nanoscale cooperative motion in a novel well-defined triblock copolymer. Small 2007, 3, 768–771.

    CAS  PubMed  Google Scholar 

  55. Yu, H.; Shishido, A.; Iyoda, T.; Ikeda, T. Novel wormlike nanostructure self-assembled in a well-defined liquid-crystalline diblock copolymer with azobenzene moieties. Macromol. Rapid Commun. 2007, 28, 927–931.

    CAS  Google Scholar 

  56. Ravi, P.; Sin, S.; Gan, L.; Gan, Y.; Tam, K.; Xia, X.; Hu, X. New water soluble azobenzene-containing diblock copolymers: synthesis and aggregation behavior. Polymer 2005, 46, 137–146.

    CAS  Google Scholar 

  57. Cui, L.; Tong, X.; Yan, X.; Liu, G.; Zhao, Y. Photoactive thermoplastic elastomers of azobenzene-containing triblock copolymers prepared through atom transfer radical polymerization. Macromolecules 2004, 37, 7097–7104.

    CAS  Google Scholar 

  58. Qi, B.; Yavrian, A.; Galstian, T.; Zhao, Y. Liquid crystalline ionomers containing azobenzene mesogens: phase stability, photoinduced birefringence and holographic grating. Macromolecules 2005, 38, 3079–3086.

    Google Scholar 

  59. Discher, D.; Eisenberg, A. Polymer vesicles. Science 2002, 297, 967–974.

    CAS  PubMed  Google Scholar 

  60. Zhao, Y. Photocontrollable block copolymer micelles: what can we control? J. Mater. Chem. 2009, 19, 4887–4895.

    CAS  Google Scholar 

  61. Huang, S.; Chen, Y.; Ma, S.; Yu, H. Hierarchical self-assembly in liquid-crystalline block copolymers enabled by chirality transfer. Angew. Chem. Int. Ed. 2018, 57, 12524–12528.

    CAS  Google Scholar 

  62. Lynd, N. A.; Meuler, A. J.; Hillmyer, M. A. Polydispersity and block copolymer self-assembly. Prog. Polym. Sci. 2008, 33, 875–893.

    CAS  Google Scholar 

  63. Takano, A.; Kamaya, I.; Takahashi, Y.; Matsushita, Y. Effect of loop/bridge conformation ratio on elastic properties of the sphere-forming ABA triblock copolymers: preparation of samples and determination of loop/bridge ratio. Macromolecules 2005, 38, 9718–9723.

    CAS  Google Scholar 

  64. Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.

    CAS  PubMed  Google Scholar 

  65. Komura, M.; Iyoda, T. AFM cross-sectional imaging of perpendicularly oriented nanocylinder structures of microphase-separated block copolymer films by crystal-like cleavage. Macromolecules 2007, 40, 4106–4108.

    CAS  Google Scholar 

  66. Watanabe, K.; Yoshida, H.; Kamata, K.; Iyoda, T. Direct TEM observation of perpendicularly oriented nanocylinder structure in amphiphilic liquid crystalline block copolymer thin films. Trans. Mater. Res. Soc. Jpn. 2005, 30, 377–381.

    CAS  Google Scholar 

  67. Komura, M.; Watanabe, K.; Iyoda, T.; Yamada, T.; Yoshida, H.; Iwasaki, Y. Laboratory-GISAXS measurements of block copolymer films with highly ordered and normally oriented nanocylinders. Chem. Lett. 2009, 38, 408–409.

    CAS  Google Scholar 

  68. Ikkala, O.; Brinke, G. Functional materials based on self-assembly of polymeric supramolecules. Science 2002, 295, 2407–2409.

    CAS  PubMed  Google Scholar 

  69. Zoelen, W.; Brinke, G. Thin films of complexed block copolymers. Soft Matter 2009, 5, 1568–1582.

    Google Scholar 

  70. Tung, S. H.; Kalarickal, N. C.; Mays, J. W.; Xu, T. Hierarchical assemblies of block-copolymer-based supramolecules in thin films. Macromolecules 2008, 41, 6453–6462.

    CAS  Google Scholar 

  71. Korhonen, J. T.; Verho, T.; Rannou, P.; Ikkala, O. Self-assembly and hierarchies in pyridine-containing homopolymers and block copolymers with hydrogen-bonded cholesteric side-chains. Macromolecules 2010, 43, 1507–1514.

    CAS  Google Scholar 

  72. Wu, S.; Bubeck, C. Macro- and microphase separation in block copolymer supramolecular assemblies induced by solvent annealing. Macromolecules 2013, 46, 3512–3518.

    CAS  Google Scholar 

  73. Berreman, D. W. Solid surface shape and the alignment of an adjacent nematic liquid crystal. Phys. Rev. Lett. 1972, 28, 1683–1686.

    CAS  Google Scholar 

  74. Reiter, G.; Gastelein, G.; Hoerner, P.; Riess, G.; Blumen, A.; Sommer, J. Nanometer-scale surface patterns with long-range order created by crystallization of diblock copolymers. Phys. Rev. Lett. 1999, 83, 3844–3847.

    CAS  Google Scholar 

  75. Uekusa, T.; Nagano, S.; Seki, T. Unique molecular orientation in a smectic liquid crystalline polymer film attained by surface-initiated graft polymerization. Langmuir 2007, 23, 4642–4645.

    CAS  PubMed  Google Scholar 

  76. Uekusa, T.; Nagano, S.; Seki, T. Highly ordered in-plane photoalignment attained by the brush architecture of liquid crystalline azobenzene polymer. Macromolecules 2009, 42, 312–318.

    CAS  Google Scholar 

  77. Haque, H. A.; Nagano, S.; Seki, T. Lubricant effect of flexible chain in the photoinduced motions of surface-grafted liquid crystalline azobenzene polymer brush. Macromolecules 2012, 45, 6095–6103.

    CAS  Google Scholar 

  78. Sano, M.; Hara, M.; Nagano, S.; Shinohara, Y.; Amemiya Y.; Seki, T. New aspects for the hierarchical cooperative motions in photoalignment process of liquid crystalline block copolymer films. Macromolecules 2015, 48, 2217–2223.

    CAS  Google Scholar 

  79. Sano, M.; Shan, F.; Hara, M.; Nagano, S.; Shinohara, Y.; Amemiya Y.; Seki, T. Dynamic photoinduced realignment processes in photoresponsive block copolymer films: effects of the chain length and block copolymer architecture. Soft Matter 2015, 11, 5918–5925.

    CAS  PubMed  Google Scholar 

  80. Haque, H. A.; Hara, M.; Nagano, S.; Seki, T. Photoinduced inplane motions of azobenzene mesogens affected by the flexibility of underlying amorphous chains. Macromolecules 2013, 46, 8275–8283.

    CAS  Google Scholar 

  81. Morikawa, Y.; Nagano, S.; Watanabe, K.; Kamata, K.; Iyoda, T.; Seki, T. Optical alignment and patterning of nanoscale microdomains in a block copolymer thin film. Adv. Mater. 2006, 18, 883–886.

    CAS  Google Scholar 

  82. Wang, T.; Li, X.; Dong, Z.; Huang, S.; Yu, H. Vertical orientation of nanocylinders in liquid-crystalline block copolymers directed by light. ACS Appl. Mater. Interfaces 2017, 9, 24864–24872.

    CAS  PubMed  Google Scholar 

  83. Nickmans, K.; Bogels, G. M.; Sanchez-Somolinos, C.; Murphy, J. N.; Leclere, P.; Voets, I. K.; Schenning, A. P. H. J. 3D orientational control in self-assembled thin films with sub-5 nm features by light. Small 2017, 13, 1701043–1701053.

    Google Scholar 

  84. Sano, M.; Nakamura, S.; Hara, M.; Nagano, S.; Shinohara, Y.; Amemiya, Y.; Seki, T. Pathways toward photoinduced alignment switching in liquid crystalline block copolymer films. Macromolecules 2014, 47, 7178–7186.

    CAS  Google Scholar 

  85. Chen, Y.; Huang, S.; Wang, T.; Yu, H. Enhanced ordering and efficient photoalignment of nanostructures in block copolymers enabled by halogen bond. Macromolecules 2020, 53, 1486–1493.

    CAS  Google Scholar 

  86. Yu, H.; Shishido, A.; Li, J.; Kamata, K.; Iyoda, T.; Ikeda, T. Stable macroscopic nanocylinder arrays in an amphiphilic diblock liquid-crystalline copolymer with successive hydrogen bonds. J. Mater. Chem. 2007, 17, 3485–3488.

    CAS  Google Scholar 

  87. Huang, S.; Pang, L.; Chen, Y.; Zhou, L.; Fang, S.; Yu, H. Hydrogen bond induces hierarchical self-assembly in liquid-crystalline block copolymers. Macromol. Rapid Commun. 2018, 39, 1700783.

    Google Scholar 

  88. Priimagi, A.; Cavallo, G.; Forni, A.; Gorynsztejn-Leben, M.; Kaivola, M.; Metrangolo, P.; Milani, R.; Shishido, A.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen bonding versus hydrogen bonding in driving self-assembly and performance of light-responsive supramolecular polymers. Adv. Funct. Mater. 2012, 22, 2572–2579.

    CAS  Google Scholar 

  89. Kravchenko, A.; Shevchenko, A.; Ovchinnikov, V.; Priimagi, A.; Kaivola, M. Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon. Adv. Mater. 2011, 23, 4174–4177.

    CAS  PubMed  Google Scholar 

  90. Yu, Y.; Nakano, M.; Ikeda, T. Directed bending of a polymer film by light-miniaturizing a simple photomechanical system could expand its range of applications. Nature 2003, 425, 145.

    CAS  PubMed  Google Scholar 

  91. Zhang, L.; Liang, H.; Jacob, J.; Naumov, P. Photogated humidity-driven motility. Nat. Commun. 2015, 6, 7429–7440.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Priimagi, A.; Saccone, M.; Cavallo, G.; Shishido, A.; Pilati, T.; Metrangolo, P.; Resnati, G. Photoalignment and surface-relief-grating formation are efficiently combined in low-molecular-weight halogen-bonded complexes. Adv. Mater. 2012, 24, 345–352.

    Google Scholar 

  93. Priimagi, A.; Cavallo, G.; Metrangolo, P.; Resnati, G. The halogen bond in the design of functional supramolecular materials: recent advances. Acc. Chem. Res. 2013, 46, 2686–2695.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Cheng, X.; Miao, T.; Yin, L.; Ji, Y.; Li, Y.; Zhang, Z.; Zhang, W.; Zhu, X. In situ controlled construction of a hierarchical supramolecular chiral liquid-crystalline polymer assembly. Angew. Chem. Int. Ed. 2020, 59, 9669–9677.

    CAS  Google Scholar 

  95. Chen, Y.; Huang, S.; Wang, T.; Dong, Z.; Yu, H. Confined self-assembly enables stabilization and patterning of nanostructures in liquid-crystalline block copolymers. Macromolecules 2019, 52, 1892–1898.

    CAS  Google Scholar 

  96. Kim, D. Y.; Tripathy, S. K.; Li, L.; Kumar, J. Laser-induced holographic surface relief gratings on nonlinear optical polymer films. Appl. Phys. Lett. 1995, 66, 1166–1168.

    CAS  Google Scholar 

  97. Yu, H.; Okano, K.; Shishido, A.; Ikeda, T.; Kamata, K.; Komura, M.; Iyoda, T. Enhancement of surface-relief gratings recorded in amphiphilic liquid-crystalline diblock copolymer by nanoscale phase separation. Adv. Mater. 2005, 17, 2184–2188.

    CAS  Google Scholar 

  98. Yu, H.; Naka, Y.; Shishido, A.; Iyoda, T.; Ikeda, T. Effect of recording time on grating formation and enhancement in an amphiphilic diblock liquid-crystalline copolymer. Mol. Cryst. Liq. Cryst. 2009, 498, 29–39.

    CAS  Google Scholar 

  99. Lee, S.; Shin, J.; Lee, Y. H.; Fan, S.; Park, J. K. Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes. Nano Lett. 2010, 10, 296–304.

    CAS  PubMed  Google Scholar 

  100. Bai, H.; Du, C.; Zhang, A.; Li, L. Breath figure arrays: unconventional fabrications, functionalizations, and applications. Angew. Chem. Int. Ed. 2013, 52, 12240–12255.

    CAS  Google Scholar 

  101. Widawski, G.; Rawiso, M.; Francois, B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 1994, 369, 387–389.

    CAS  Google Scholar 

  102. Chen, S.; Lu, X.; Hu, Y.; Lu, Q. Biomimetic honeycomb-patterned surface as the tunable cell adhesion scaffold. Biomater. Sci. 2015, 3, 85–93.

    PubMed  Google Scholar 

  103. Ye, Q.; Chen, S.; Zhu, D.; Lu, X.; Lu, Q. Preparation of aggregation-induced emission dots for long-term two-photon cell imaging. J. Mater. Chem. B 2015, 3, 3091–3097.

    CAS  PubMed  Google Scholar 

  104. Wang, W.; Du, C.; Wang, X.; He, X.; Lin, J.; Li, L.; Lin, S. Directional photomanipulation of breath figure arrays. Angew. Chem. Int. Ed. 2014, 53, 12116–12119.

    CAS  Google Scholar 

  105. Wang, W.; Shen, D.; Li, X.; Yao, Y.; Lin, J.; Wang, A.; Yu, J.; Wang, Z.; Hong, S.; Lin, Z.; Lin, S. Light-driven shape-memory porous films with precisely controlled dimensions. Angew. Chem. Int. Ed. 2018, 57, 2139–2143.

    Google Scholar 

  106. Chen, D.; Liu, H.; Kobayashi, T.; Yu, H. Fabrication of regularly patterned microporous films by self-organization of an amphiphilic liquid-crystalline diblock copolymer in a dry environment. Macromol. Mater. Eng. 2010, 295, 26–31.

    CAS  Google Scholar 

  107. Mukai, K.; Hara, M.; Nagano, S.; Seki, T. High-density liquid-crystalline polymer brushes formed by surface segregation and self-assembly. Angew. Chem. Int. Ed. 2016, 128, 14234–14238.

    Google Scholar 

  108. Cai, F.; Huang, Z.; Zheng, F.; Lu, X.; Lu, Q. Enhancement of the photoalignment stability of block copolymer brushes by anchor segments. Macromol. Chem. Phys. 2018, 219, 1800153.

    Google Scholar 

  109. Zhou, H.; Xue, C.; Weis, P.; Suzuki, Y.; Huang, S.; Koynov, K.; Auernhammer, G. K.; Berger, R.; Butt, H. J.; Wu, S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem. 2017, 9, 145–151.

    CAS  PubMed  Google Scholar 

  110. Ito, S.; Akiyama, H.; Sekizawa, R.; Mori, M.; Yoshida, M.; Kihara, H. Light-induced reworkable adhesives based on ABA-type triblock copolymers with azopolymer termini. ACS Appl. Mater. Interfaces 2018, 10, 32649–32658.

    CAS  PubMed  Google Scholar 

  111. White, T. J.; Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087–1098.

    CAS  PubMed  Google Scholar 

  112. Lv, J.; Liu, Y.; Wei, J.; Chen, E.; Qin, L.; Yu, Y. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 2016, 537, 179–184.

    CAS  PubMed  Google Scholar 

  113. Yin, L.; Han, L.; Ge, F.; Tong, X.; Zhang, W.; Soldera, A.; Zhao, Y. A novel side-chain liquid crystal elastomer exhibiting anomalous reversible shape change. Angew. Chem. Int. Ed. 2020, 59, 15129–15134.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2018YFB0703702) and the National Natural Science Foundation of China (Nos. 51773002 and 51921002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Yu.

Additional information

Biography

Hai-Feng Yu received his PhD degree from Tsinghua University in 2003. Then he went to Japan, where he worked as a researcher at JST-CREST, and then as a postdoc at JSPS at Tokyo Institute of Technology and Kyodo University. In 2008, he started his independent research as Associate Professor by special appointment at Nagaoka University of Technology. In 2012, he joined Peking University as a research professor as the “2011 National Thousand Young Talents Program” recipient. In 2013, he obtained the “NSFC Award” for Excellent Young Scholar. His research interests focus on photo-responsive soft matter, supramolecular self-assembled materials and organic/inorganic hybrid materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, F., Chen, YX., Wang, WZ. et al. Macroscopic Regulation of Hierarchical Nanostructures in Liquid-crystalline Block Copolymers towards Functional Materials. Chin J Polym Sci 39, 397–416 (2021). https://doi.org/10.1007/s10118-021-2531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2531-1

Keywords

Navigation