Skip to main content
Log in

Identification of Na+-Pumping Cytochrome Oxidase in the Membranes of Extremely Alkaliphilic Thioalkalivibrio Bacteria

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

For the first time, the functioning of the oxygen reductase Na+-pump (Na+-pumping cytochrome c oxidase of the cbb3-type) was demonstrated by examining the respiratory chain of the extremely alkaliphilic bacterium Thioalkalivibrio versutus [Muntyan, M. S., et al. (2015) Cytochrome cbb3 of Thioalkalivibrio is a Na+-pumping cytochrome oxidase, Proc. Natl. Acad. Sci. USA, 112, 7695-7700], a product of the ccoNOQP operon. In this study, we detected and identified this enzyme using rabbit polyclonal antibody against the predicted C-terminal amino acid sequence of its catalytic subunit. We found that this cbb3-type oxidase is synthesized in bacterial cells, where it is located in the membranes. The 48-kDa oxidase subunit (CcoN) is catalytic, while subunits CcoO and CcoP with molecular masses of 29 and 34 kDa, respectively, are cytochromes c. The theoretical pI values of the CcoN, CcoO, and CcoP subunits were determined. It was shown that parts of the CcoO and CcoP subunits exposed to the aqueous phase on the cytoplasmic membrane P-side are enriched with negatively charged amino acid residues, in contrast to the parts of the integral subunit CcoN adjacent to the aqueous phase. Thus, the Na+-pumping cytochrome c oxidase of T. versutus, both in function and in structure, demonstrates adaptation to extremely alkaline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

AS:

ammonium sulphate

CO:

cytochrome c oxidase

NQR:

Na+:NADH quinone oxidoreductase

OR-ETC:

oxygen reductase electron-transporting chain

References

  1. Tokuda, H., and Unemoto, T. (1984) Na+ is translocated at NADH: quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus, J. Biol. Chem., 259, 7785-7790.

    CAS  PubMed  Google Scholar 

  2. Skulachev, V. P. (1992) The laws of cell energetics, Eur. J. Biochem., 208, 203-209, https://doi.org/10.1111/j.1432-1033.1992.tb17175.x.

    Article  CAS  PubMed  Google Scholar 

  3. Skulachev, V. P. (1984) Sodium bioenergetics, Trends Biochem. Sci., 9, 483-485, https://doi.org/10.1016/0968-0004(84)90317-7.

    Article  CAS  Google Scholar 

  4. Muntyan, M. S., Cherepanov, D. A., Malinen, A. M., Bloch, D. A., Sorokin, D. Y., et al. (2015) Cytochrome cbb3 of Thioalkalivibrio is a Na+-pumping cytochrome oxidase, Proc. Natl. Acad. Sci. USA, 112, 7695-7700, https://doi.org/10.1073/pnas.1417071112.

    Article  CAS  PubMed  Google Scholar 

  5. Gribaldo, S., Talla, E., and Brochier-Armanet, C. (2009) Evolution of the haem copper oxidases superfamily: a rooting tale, Trends Biochem. Sci., 34, 375-381, https://doi.org/10.1016/j.tibs.2009.04.002.

    Article  CAS  PubMed  Google Scholar 

  6. Saraste, M., and Castresana, J. (1994) Cytochrome oxidase evolved by tinkering with denitrification enzymes, FEBS Lett., 341, 1-4, https://doi.org/10.1016/0014-5793(94)80228-9.

    Article  CAS  PubMed  Google Scholar 

  7. Buschmann, S., Warkentin, E., Xie, H., Langer, J. D., Ermler, U., and Michel, H. (2010) The structure of cbb3 cytochrome oxidase provides insights into proton pumping, Science, 329, 327-330, https://doi.org/10.1126/science.1187303.

    Article  CAS  PubMed  Google Scholar 

  8. Sorokin, D. Y., Banciu, H., Robertson, L. A., Kuenen, J. G., Muntyan, M. S., and Muyzer, G. (2013) Halophilic and haloalkaliphilic sulfur-oxidizing bacteria, in The Prokaryotes: Prokaryotic Physiology and Biochemistry (Rosenberg, E., DeLong, E., Lory, S., Stackebrandt, E., and Thompson, F., eds.) Springer, Berlin, Heidelberg, pp. 529-554, https://doi.org/10.1007/978-3-642-30141-4_77.

  9. Malinen, A. M., Belogurov, G. A., Baykov, A. A., and Lahti, R. (2007) Na+-pyrophosphatase: a novel primary sodium pump, Biochemistry, 46, 8872-8878, https://doi.org/10.1021/bi700564b.

    Article  CAS  PubMed  Google Scholar 

  10. Li, H., Sineshchekov, O. A., da Silva, G. F., and Spudich, J. L. (2015) In vitro demonstration of dual light-driven Na+/H+ pumping by a microbial rhodopsin, Biophys. J., 109, 1446-1453, https://doi.org/10.1016/j.bpj.2015.08.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grischuk, Y. V., Muntyan, M. S., Popova, I. V., and Sorokin, D. Y. (2003) Ion transport coupled to terminal oxidase functioning in the extremely alkaliphilic halotolerant bacterium Thioalkalivibrio, Biochemistry (Moscow), 68, 385-390, https://doi.org/10.1023/a:1023639611272.

    Article  CAS  Google Scholar 

  12. Sorokin, D. Y., Muntyan, M. S., Toshchakov, S. V., Korzhenkov, A., and Kublanov, I. V. (2018) Phenotypic and genomic properties of a novel deep-lineage haloalkaliphilic member of the phylum Balneolaeota from soda lakes possessing Na+-translocating proteorhodopsin, Front. Microbiol., 9, 2672, https://doi.org/10.3389/fmicb.2018.02672.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sorokin, D. Y., Lysenko, A. M., Mityushina, L. L., Tourova, T. P., Jones, B. E., et al. (2001) Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov., novel and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes, Int. J. Syst. Evol. Microbiol., 51, 565-580, https://doi.org/10.1099/00207713-51-2-565.

    Article  CAS  PubMed  Google Scholar 

  14. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22, 4673-4680, https://doi.org/10.1093/nar/22.22.4673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muntyan, M. S., and Skripnikova, E. V. (1993) Two types of terminal oxidase in alkalotolerant Bacillus FTU, Biochim. Biophys. Acta, 1143, 142-146, https://doi.org/10.1016/0005-2728(93)90136-4.

    Article  CAS  Google Scholar 

  16. Schägger, H., and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Anal. Biochem., 166, 368-379, https://doi.org/10.1016/0003-2697(87)90587-2.

    Article  PubMed  Google Scholar 

  17. Davis, B. J. (1964) Disk electrophoresis – II. Method and application to human serum proteins, Ann. N. Y. Acad. Sci., 121, 404-427.

    Article  CAS  Google Scholar 

  18. Thomas, P. E., Ryan, D., and Levin, W. (1976) An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels, Anal. Biochem., 75, 168-176, https://doi.org/10.1016/0003-2697(76)90067-1.

    Article  CAS  PubMed  Google Scholar 

  19. Muntyan, M. S., Bloch, D. A., Ustiyan, V. S., and Drachev, L. A. (1993) Kinetics of CO binding to H+-motive oxidases of the caa3-type from Bacillus FTU and of the o-type from Escherichia coli, FEBS Lett., 327, 351-354, https://doi.org/10.1016/0014-5793(93)81019-V.

    Article  CAS  PubMed  Google Scholar 

  20. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. USA, 76, 4350-4354, https://doi.org/10.1073/pnas.76.9.4350.

    Article  CAS  PubMed  Google Scholar 

  21. Grinkevich, V. A., Lysenko, A. M., Muntyan, M. S., Skripnikova, E. V., and Afrikyan, E. K. (1997) Identification of Bacillus sp. FTU strain and the study of the caa3-type oxidase homology, Biochemistry (Moscow), 62, 718-724.

    CAS  Google Scholar 

  22. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., et al. (2018) SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res., 46, W296-W303, https://doi.org/10.1093/nar/gky427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., and Bairoch, A. (2005) Protein identification and analysis tools on the ExPASy server, in The Proteomics Protocols Handbook (Walker, J. M., ed.) Humana Press, Totowa, New Jersey, pp. 571-607, https://doi.org/10.1385/1-59259-890-0:571.

  24. Toledo-Cuevas, M., Barquera, B., Gennis, R. B., Wikström, M., and Garcı́a-Horsman, J. A. (1998) The cbb3-type cytochrome c oxidase from Rhodobacter sphaeroides, a proton-pumping heme-copper oxidase, Biochim. Biophys. Acta, 1365, 421-434, https://doi.org/10.1016/S0005-2728(98)00095-4.

    Article  CAS  PubMed  Google Scholar 

  25. Myllykallio, H., and Liebl, U. (2000) Dual role for cytochrome oxidase in clinically relevant proteobacteria, Trends Microbiol., 8, 542-543, https://doi.org/10.1016/S0966-842X(00)91831-6.

    Article  CAS  PubMed  Google Scholar 

  26. Garcia-Horsman, J. A., Berry, E., Shapleigh, J. P., Alben, J. O., and Gennis, R. B. (1994) A novel cytochrome c oxidase from Rhodobacter sphaeroides that lacks CuA, Biochemistry, 33, 3113-3119, https://doi.org/10.1021/bi00176a046.

    Article  CAS  PubMed  Google Scholar 

  27. Gray, K. A., Grooms, M., Myllykallio, H., Moomaw, C., Slaughter, C., and Daldal, F. (1994) Rhodobacter capsulatus contains a novel cb-type cytochrome c oxidase without a CuA center, Biochemistry, 33, 3120-3127, https://doi.org/10.1021/bi00176a047.

    Article  CAS  PubMed  Google Scholar 

  28. Rauhamäki, V., Bloch, D. A., and Wikström, M. (2012) Mechanistic stoichiometry of proton translocation by cytochrome cbb3, Proc. Natl. Acad. Sci. USA, 109, 7286-7291, https://doi.org/10.1073/pnas.1202151109.

    Article  PubMed  Google Scholar 

  29. Thöny-Meyer, L., Beck, C., Preisig, O., and Hennecke, H. (1994) The ccoNOQP gene cluster codes for a cb-type cytochrome oxidase that functions in aerobic respiration of Rhodobacter capsulatus, Mol. Microbiol., 14, 705-716, https://doi.org/10.1111/j.1365-2958.1994.tb01308.x.

    Article  PubMed  Google Scholar 

  30. Zeilstra-Ryalls, J. H., Gabbert, K., Mouncey, N. J., Kaplan, S., and Kranz, R. G. (1997) Analysis of the fnrL gene and its function in Rhodobacter capsulatus, J. Bacteriol., 179, 7264-7273, https://doi.org/10.1128/jb.179.23.7264-7273.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Preisig, O., Zufferey, R., Thöny-Meyer, L., Appleby, C. A., and Hennecke, H. (1996) A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum, J. Bacteriol., 178, 1532-1538, https://doi.org/10.1128/jb.178.6.1532-1538.1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zufferey, R., Arslan, E., Thöny-Meyer, L., and Hennecke, H. (1998) How replacements of the 12 conserved histidines of subunit I affect assembly, cofactor binding, and enzymatic activity of the Bradyrhizobium japonicum cbb3-type oxidase, J. Biol. Chem., 273, 6452-6459, https://doi.org/10.1074/jbc.273.11.6452.

    Article  CAS  PubMed  Google Scholar 

  33. Sorokin, D. Y., Cherepanov, A., de Vries, S., and Kuenen, G. J. (1999) Identification of cytochrome c oxidase in the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium “Thioalcalomicrobium aerophilum” strain AL 3, FEMS Microbiol. Lett., 179, 91-99, https://doi.org/10.1016/S0378-1097(99)00398-5.

    Article  CAS  PubMed  Google Scholar 

  34. Tsukita, S., Koyanagi, S., Nagata, K., Koizuka, H., Akashi, H., Shimoyama, T., Tamura, T., and Sone, N. (1999) Characterization of a cb-type cytochrome c oxidase from Helicobacter pylori, J. Biochem., 125, 194-201, https://doi.org/10.1093/oxfordjournals.jbchem.a022259.

    Article  CAS  PubMed  Google Scholar 

  35. Urbani, A., Gemeinhardt, S., Warne, A., and Saraste, M. (2001) Properties of the detergent solubilised cytochrome c oxidase (cytochrome cbb3) purified from Pseudomonas stutzeri, FEBS Lett., 508, 29-35, https://doi.org/10.1016/S0014-5793(01)03006-X.

    Article  CAS  PubMed  Google Scholar 

  36. Granados-Baeza, M. J., Gómez-Hernández, N., Mora, Y., Delgado, M. J., Romero, D., and Girard, L. (2007) Novel reiterated Fnr-type proteins control the production of the symbiotic terminal oxidase cbb3 in Rhizobium etli CFN42, Mol. Plant-Microbe Interact., 20, 1241-1249, https://doi.org/10.1094/MPMI-20-10-1241.

    Article  CAS  PubMed  Google Scholar 

  37. De Gier, J. W. L., Lübben, M., Reijnders, W.N., Tipker, C. A., Slotboom, D. J., van Spanning, R. J., Stouthamer, A. H., and van der Oost, J. (1994) The terminal oxidases of Paracoccus denitrificans, Mol. Microbiol., 13, 183-196, https://doi.org/10.1111/j.1365-2958.1994.tb00414.x.

    Article  CAS  PubMed  Google Scholar 

  38. Raitio, M., and Wikström, M. (1994) An alternative cytochrome oxidase of Paracoccus denitrificans functions as a proton pump, Biochim. Biophys. Acta, 1186, 100-106, https://doi.org/10.1016/0005-2728(94)90140-6.

    Article  CAS  Google Scholar 

  39. Arslan, E., Kannt, A., Thöny-Meyer, L., and Hennecke, H. (2000) The symbiotically essential cbb3-type oxidase of Bradyrhizobium japonicum is a proton pump, FEBS Lett., 470, 7-10, https://doi.org/10.1016/S0014-5793(00)01277-1.

    Article  CAS  PubMed  Google Scholar 

  40. Kaim, G., and Dimroth, P. (1995) A double mutation in subunit c of the Na+-specific F1F0-ATPase of Propionigenium modestum results in a switch from Na+ to H+-coupled ATP synthesis in the Escherichia coli host cells, J. Mol. Biol., 253, 726-738, https://doi.org/10.1006/jmbi.1995.0586.

    Article  CAS  PubMed  Google Scholar 

  41. Kaim, G., Wehrle, F., Gerike, U., and Dimroth, P. (1997) Molecular basis for the coupling ion selectivity of F1FO ATP synthases: probing the liganding groups for Na+ and Li+ in the c subunit of the ATP synthase from Propionigenium modestum, Biochemistry, 36, 9185-9194, https://doi.org/10.1021/bi970831q.

    Article  CAS  PubMed  Google Scholar 

  42. Dimroth, P. (2000) Operation of the F0 motor of the ATP synthase, Biochim. Biophys. Acta, 1458, 374-386, https://doi.org/10.1016/s0005-2728(00)00088-8.

    Article  CAS  PubMed  Google Scholar 

  43. Inoue, K., Ono, H., Abe-Yoshizumi, R., Yoshizawa, S., Ito, H., Kogure, K., and Kandori, H. (2013) A light-driven sodium ion pump in marine bacteria, Nat. Commun., 4, 1-10, https://doi.org/10.1038/ncomms2689.

    Article  CAS  Google Scholar 

  44. Mamedov, M. D., Mamedov, A. M., Bertsova, Y. V., and Bogachev, A. V. (2016) A single mutation converts bacterial Na+-transporting rhodopsin into an H+ transporter, FEBS Lett., 590, 2827-2835, https://doi.org/10.1002/1873-3468.12324.

    Article  CAS  PubMed  Google Scholar 

  45. Luoto, H. H., Baykov, A. A., Lahti, R., Malinen, A. M. (2013) Membrane-integral pyrophosphatase subfamily capable of translocating both Na+ and H+, Proc. Natl. Acad. Sci. USA, 110, 1255-1260, https://doi.org/10.1073/pnas.1217816110.

    Article  PubMed  Google Scholar 

  46. Luoto, H. H., Nordbo, E., Baykov, A. A., Lahti, R., and Malinen, A. M. (2013) Membrane Na+-pyrophosphatases can transport protons at low sodium concentrations, J. Biol. Chem., 288, 35489-35499, https://doi.org/10.1074/jbc.M113.510909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Efiok, B. J., Webster, D. A. (1990) A cytochrome that can pump sodium ion, Biochem. Biophys. Res. Commun., 173, 370-375, https://doi.org/10.1016/s0006-291x(05)81067-8.

    Article  CAS  PubMed  Google Scholar 

  48. Chung, Y. T., Stark, B. C., and Webster, D. A. (2006) Role of Asp544 in subunit I for Na+ pumping by Vitreoscilla cytochrome bo, Biochem. Biophys. Res. Commun., 348, 1209-1214, https://doi.org/10.1016/j.bbrc.2006.07.184.

    Article  CAS  PubMed  Google Scholar 

  49. Efiok, B. J., and Webster, D. A. (1990) Respiratory-driven Na+ electrical potential in the bacterium Vitreoscilla, Biochemistry, 29, 4734-4739, https://doi.org/10.1021/bi00471a030.

    Article  CAS  PubMed  Google Scholar 

  50. Graf, S., Brzezinski, P., and von Ballmoos, C. (2019) The proton pumping bo oxidase from Vitreoscilla, Sci. Rep., 9, 4766, https://doi.org/10.1038/s41598-019-40723-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Banciu, H. L., and Muntyan, M. S. (2015) Adaptive strategies in the double-extremophilic prokaryotes inhabiting soda lakes, Curr. Opin. Microbiol., 25, 73-79, https://doi.org/10.1016/j.mib.2015.05.003.

    Article  CAS  PubMed  Google Scholar 

  52. Muntyan, M. S., Morozov, D. A., Klishin, S. S., Khitrin, N. V., and Kolomijtseva, G. Y. (2012) Evaluation of the electrical potential on the membrane of the extremely alkaliphilic bacterium Thioalkalivibrio, Biochemistry (Moscow), 77, 917-924, https://doi.org/10.1134/S0006297912080135.

    Article  CAS  Google Scholar 

  53. Krulwich, T. A., Liu, J., Morino, M., Fujisawa, M., Ito, M., and Hicks, D. B. (2011) Adaptive mechanisms of extreme alkaliphiles, in Extremophiles handbook (Horikoshi, K., Antranikian, G., Bull, A. T., Robb, F. T., and Stetter, K. O., eds) Springer, Tokyo, pp. 119-139, https://doi.org/10.1007/978-4-431-53898-1_2.6.

  54. Krulwich, T. A., and Ito, M. (2013) Alkaliphilic prokaryotes, in The prokaryotes – Prokaryotic Communities and Ecophysiology (Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., and Thompson, F., eds) Springer, Berlin, Heidelberg, pp. 441-469, https://doi.org/10.1007/978-3-642-30123-0_58.

  55. Lewis, R. J., Belkina, S., and Krulwich, T. A. (1980) Alkalophiles have much higher cytochrome contents than conventional bacteria and than their own non-alkalophilic mutant derivatives, Biochem. Biophys. Res. Commun., 95, 857-863, https://doi.org/10.1016/0006-291x(80)90866-9.

    Article  CAS  PubMed  Google Scholar 

  56. Muntyan, M. S., Popova, I. V., Bloch, D. A., Skripnikova, E. V., and Ustiyan, V. S. (2005) Energetics of alkalophilic representatives of the genus Bacillus, Biochemistry (Moscow), 70, 137-142, https://doi.org/10.1007/s10541-005-0092-5.

    Article  CAS  Google Scholar 

  57. Krulwich, T. A., Ito, M., and Guffanti, A. A. (2001) The Na+-dependence of alkaliphily in Bacillus, Biochim. Biophys. Acta, 1505, 158-168, https://doi.org/10.1016/s0005-2728(00)00285-1.

    Article  CAS  PubMed  Google Scholar 

  58. Muntyan, M. S., and Bloch, D. A. (2008) Study of redox potential in cytochrome c covalently bound to terminal oxidase of alkaliphilic Bacillus pseudofirmus FTU, Biochemistry (Moscow), 73, 107-111, https://doi.org/10.1134/s0006297908010161.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to V. P. Skulachev for constant interest and fruitful discussion of their research and to N. V. Pozdnyakova for the help in the work with animals.

Funding

This work was supported by the Russian Foundation for Basic Research (projects nos. 02-04-49107-a and 05-04-49504-a, genome studies; project no. 20-04-01105-a, protein studies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Muntyan.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. The handling of the rabbits and their use in the experiments were in compliance with the protocols developed and approved by the Animal Ethics Committee of the Belozersky Institute of Physico-Chemical Biology. All procedures were in accordance with the guidelines of the Federation of Laboratory Animal Science Associations (FELASA).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muntyan, M.S., Morozov, D.A., Leonova, Y.F. et al. Identification of Na+-Pumping Cytochrome Oxidase in the Membranes of Extremely Alkaliphilic Thioalkalivibrio Bacteria. Biochemistry Moscow 85, 1631–1639 (2020). https://doi.org/10.1134/S0006297920120147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920120147

Keywords

Navigation