Skip to main content
Log in

Autophagy as a Target for the Retinoprotective Effects of the Mitochondria-Targeted Antioxidant SkQ1

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Age-related macular degeneration (AMD) is a complex neurodegenerative disease, a main cause of vision loss in elderly people. The pathogenesis of dry AMD, the most common form of AMD (~ 80% cases), involves degenerative changes in the retinal pigment epithelium (RPE), which are closely associated with the age-associated impairments in autophagy. Reversion of these degenerative changes is considered as a promising approach for the treatment of this incurable disease. The purpose of our study was to assess the relationship between previously identified retinoprotective effects of the mitochondrial antioxidant plastoquinonyl-decyl-triphenylphosphonium (SkQ1) and its influence on the autophagy process in senescence-accelerated OXYS rats characterized by the development of AMD-like retinopathy (Wistar rats were used as a control). The treatment with SkQ1 (250 nmol/kg body weight) during the period of active disease progression (from 12 to 18 months of age) completely prevented progression of clinical manifestations of retinopathy in the OXYS rats, suppressed atrophic changes in the RPE cells and activated autophagy in the retina, which was evidenced by a significant decrease in the content of the multifunctional adapter protein p62/Sqstm1 and increase in the level of the Beclin1 gene mRNA. In general, the results obtained earlier and in the present study have shown that SkQ1 is a promising agent for prevention and suppression of AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

AMD:

age-related macular degeneration

FITC:

fluorescein isothiocyanate

RPE:

retinal pigment epithelium

SkQ1:

10-(6′a-plastoquinonyl)decyltriphenylphosphonium

TFAM:

mitochondrial transcription factor A

VDAC1:

voltage-dependent anionic channel 1

References

  1. Wang, S., Wang, X., Cheng, Y., Ouyang, W., Sang, X., et al. (2019) Autophagy dysfunction, cellular senescence, and abnormal immune-inflammatory responses in AMD: from mechanisms to therapeutic potential, Oxid. Med. Cell Longev., 2019, 3632169, https://doi.org/10.1155/2019/3632169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kaarniranta, K., Tokarz, P., Koskela, A., Paterno, J., and Blasiak, J. (2017) Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration, Cell Biol. Toxicol., 33, 113-128, https://doi.org/10.1007/s10565-016-9371-8.

    Article  CAS  PubMed  Google Scholar 

  3. Blasiak, J., Pawlowska, E., Szczepanska, J., and Kaarniranta, K. (2019) Interplay between autophagy and the ubiquitin-proteasome system and its role in the pathogenesis of age-related macular degeneration, Int. J. Mol. Sci., 20, 210, https://doi.org/10.3390/ijms20010210.

    Article  CAS  PubMed Central  Google Scholar 

  4. Yun, H. R., Jo, Y. H., Kim, J., Shin, Y., Kim, S. S., and Choi, T. G. (2020) Roles of autophagy in oxidative stress, Int. J. Mol. Sci., 21, 3289, https://doi.org/10.3390/ijms21093289.

    Article  CAS  PubMed Central  Google Scholar 

  5. García-Prat, L., Martínez-Vicente, M., Perdiguero, E., Ortet, L., Rodríguez-Ubreva, J., et al. (2016) Autophagy maintains stemness by preventing senescence, Nature, 529, 37-42, https://doi.org/10.1038/nature16187.

    Article  CAS  PubMed  Google Scholar 

  6. Wohlgemuth, S. E., Calvani, R., and Marzetti, E. (2014) The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology, J. Mol. Cell Cardiol., 71, 62-70, https://doi.org/10.1016/j.yjmcc.2014.03.007.

    Article  CAS  PubMed  Google Scholar 

  7. Hyttinen, J., Viiri, J., Kaarniranta, K., and Błasiak, J. (2018) Mitochondrial quality control in AMD: does mitophagy play a pivotal role? Cell. Mol. Life Sci., 75, 2991-3008, https://doi.org/10.1007/s00018-018-2843-7.

    Article  CAS  PubMed  Google Scholar 

  8. Novikova, Y. P., Gancharova, O. S., Eichler, O. V., Philippov, P. P., and Grigoryan, E. N. (2014) Preventive and therapeutic effects of SkQ1-containing Visomitin eye drops against light-induced retinal degeneration, Biochemistry (Moscow), 79, 1101-1110, https://doi.org/10.1134/S0006297914100113.

    Article  CAS  Google Scholar 

  9. Saprunova, V. B., Lelekova, M. A., Kolosova, N. G., and Bakeeva, L. E. (2012) SkQ1 slows development of age-dependent destructive processes in retina and vascular layer of eyes of Wistar and OXYS rats, Biochemistry (Moscow), 77, 648-658, https://doi.org/10.1134/S0006297912060120.

    Article  CAS  Google Scholar 

  10. Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A., Grigorian, E. N., et al. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Age-related eye disease. SkQ1 returns vision to blind animals, Biochemistry (Moscow), 73, 1317-1328, https://doi.org/10.1134/s0006297908120043.

    Article  CAS  Google Scholar 

  11. Muraleva, N. A., Kozhevnikova, O. S., Zhdankina, A. A., Stefanova, N. A., Karamysheva, T. V., Fursova, A. Z., and Kolosova, N. G. (2014) The mitochondria-targeted antioxidant SkQ1 restores αB-crystallin expression and protects against AMD-like retinopathy in OXYS rats, Cell Cycle, 13, 3499-3505, https://doi.org/10.4161/15384101.2014.958393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Muraleva, N. A., Kozhevnikova, O. S., Fursova, A. Z., and Kolosova, N. G. (2019) Suppression of AMD like pathology by mitochondria-targeted antioxidant SkQ1 is associated with a decrease in the accumulation of amyloid β and in mTOR activity, Antioxidants (Basel, Switzerland), 8, 177, https://doi.org/10.3390/antiox8060177.

    Article  CAS  Google Scholar 

  13. Markovets, A. M., Fursova, A. Z., and Kolosova, N. G. (2011) Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression, PLoS One, 6, e21682, https://doi.org/10.1371/journal.pone.0021682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Markovets, A. M., Saprunova, V. B., Zhdankina, A. A., Fursova, A. Zh., Bakeeva, L. E., and Kolosova, N. G. (2011) Alterations of retinal pigment epithelium cause AMD-like retinopathy in senescence-accelerated OXYS rats, Aging Albany N.Y., 3, 44-54, https://doi.org/10.18632/aging.100243.

    Article  CAS  Google Scholar 

  15. Telegina, D. V., Kozhevnikova, O. S., Bayborodin, S. I., and Kolosova, N. G. (2017) Contributions of age-related alterations of the retinal pigment epithelium and of glia to the AMD-like pathology in OXYS rats, Sci. Rep., 7, 41533, https://doi.org/10.1038/srep41533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kozhevnikova, O. S., Telegina, D. V., Devyatkin, V. A., and Kolosova, N. G. (2018) Involvement of the autophagic pathway in the progression of AMD-like retinopathy in senescence-accelerated OXYS rats, Biogerontology, 19, 223-235, https://doi.org/10.1007/s10522-018-9751-y.

    Article  CAS  PubMed  Google Scholar 

  17. Telegina, D. V., Kolosova, N. G., and Kozhevnikova, O. S. (2019) Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina, BMC Med. Genomics, 12, 48, https://doi.org/10.1186/s12920-019-0493-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tyumentsev, M. A., Stefanova, N. A., Kiseleva, E. V., and Kolosova, N. G. (2018) Mitochondria with morphology characteristic for Alzheimer’s disease patients are found in the brain of OXYS rats, Biochemistry (Moscow), 83, 1083-1088, https://doi.org/10.1134/S0006297918090109.

    Article  CAS  Google Scholar 

  19. Kozhevnikova, O. S., Telegina, D. V., Tyumentsev, M. A., and Kolosova, N. G. (2019) Disruptions of autophagy in the rat retina with age during the development of age-related-macular-degeneration-like retinopathy, Int. J. Mol. Sci., 20, 4804, https://doi.org/10.3390/ijms20194804.

    Article  CAS  PubMed Central  Google Scholar 

  20. Telegina, D. V., Suvorov, G. K., Kozhevnikova, O. S., and Kolosova, N. G. (2019) Mechanisms of neuronal death in the cerebral cortex during aging and development of Alzheimer’s disease-like pathology in rats, Int. J. Mol. Sci., 20, 5632, https://doi.org/10.3390/ijms20225632.

    Article  CAS  PubMed Central  Google Scholar 

  21. Jankauskas, S. S., Pevzner, I. B., Andrianova, N. V., Zorova, L. D., Popkov, V. A., et al. (2017) The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy, Sci. Rep., 7, 44430, https://doi.org/10.1038/srep44430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT–PCR, Nucleic Acids Res., 29, 45-45, https://doi.org/10.1093/nar/29.9.e45.

    Article  Google Scholar 

  23. Andersen, C. L., Jensen, J. L., and Ørntoft, T. F. (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets, Cancer Res., 64, 5245-5250, https://doi.org/10.1158/0008-5472.CAN-04-0496.

    Article  CAS  PubMed  Google Scholar 

  24. Strauss, O. (2005) The retinal pigment epithelium in visual function, Physiol. Rev., 85, 845-881, https://doi.org/10.1152/physrev.00021.2004.

    Article  CAS  PubMed  Google Scholar 

  25. Tarau, I. S., Berlin, A., Curcio, C. A., and Ach, T. (2019) The cytoskeleton of the retinal pigment epithelium: from normal aging to age-related macular degeneration, Int. J. Mol. Sci., 20, 3578, https://doi.org/10.3390/ijms20143578.

    Article  CAS  PubMed Central  Google Scholar 

  26. Kolosova, N. G., Kozhevnikova, O. S., Telegina, D. V., Fursova, A. Z., Stefanova, N. A., et al. (2018) p62 /SQSTM1 coding plasmid prevents age related macular degeneration in a rat model, Aging, 10, 2136-2147, https://doi.org/10.18632/aging.101537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mizushima, N., Yoshimori, T., and Levine, B. (2010) Methods in mammalian autophagy research, Cell, 140, 313-326, https://doi.org/10.1016/j.cell.2010.01.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Telegina, D. V., Kozhevnikova, O. S., and Kolosova, N. G. (2016) Molecular mechanisms of cell death in retina during development of age-related macular degeneration, Adv. Gerontol., 7, 17-24, https://doi.org/10.1134/S2079057017010155.

    Article  Google Scholar 

  29. Barbosa, M. C., Grosso, R. A., and Fader, C. M. (2019) Hallmarks of aging: an autophagic perspective, Front. Endocrinol., 9, 790, https://doi.org/10.3389/fendo.2018.00790.

    Article  Google Scholar 

  30. Qi, X., Mitter, S. K., Yan, Y., Busik, J. V., Grant, M. B., and Boulton, M. E. (2020) Diurnal rhythmicity of autophagy is impaired in the diabetic retina, Cells, 9, 905, https://doi.org/10.3390/cells9040905.

    Article  CAS  PubMed Central  Google Scholar 

  31. Seibenhener, M. L., Du, Y., Diaz-Meco, M. T., Moscat, J., Wooten, M. C., and Wooten, M. W. (2013) A role for sequestosome 1/p62 in mitochondrial dynamics, import and genome integrity, Biochim. Biophys. Acta, 1833, 452-459, https://doi.org/10.1016/j.bbamcr.2012.11.004.

    Article  CAS  PubMed  Google Scholar 

  32. Kang, I., Chu, C. T., and Kaufman, B. A. (2018) The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms, FEBS Lett., 592, 793-811, https://doi.org/10.1002/1873-3468.12989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Picca, A., and Lezza, A. M. (2015) Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: useful insights from aging and calorie restriction studies, Mitochondrion, 25, 67-75, https://doi.org/10.1016/j.mito.2015.10.001.

    Article  CAS  PubMed  Google Scholar 

  34. Loshchenova, P. S., Sinitsyna, O. I., Fedoseeva, L. A., Stefanova, N. A., and Kolosova, N. G. (2015) Influence of antioxidant SkQ1 on accumulation of mitochondrial DNA deletions in the hippocampus of senescence-accelerated OXYS rats, Biochemistry (Moscow), 80, 596-603.

    Article  CAS  Google Scholar 

  35. Geisler, S., Holmström, K. M., Skujat, D., Fiesel, F. C., Rothfuss, O. C., Kahle, P. J., and Springer, W. (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1, Nat. Cell Biol., 12, 119-131, https://doi.org/10.1038/ncb2012.

    Article  CAS  PubMed  Google Scholar 

  36. Narendra, D., Kane, L. A., Hauser, D. N., Fearnley, I. M., and Youle, R. J. (2010) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both, Autophagy, 6, 1090-1106, https://doi.org/10.4161/auto.6.8.13426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Okatsu, K., Saisho, K., Shimanuki, M., Nakada, K., Shitara, H., et al. (2010) p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria, Genes Cells, 15, 887-900, https://doi.org/10.1111/j.1365-2443.2010.01426.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun, Y., Vashisht, A. A., Tchieu, J., Wohlschlegel, J. A., and Dreier, L. (2012) Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy, J. Biol. Chem., 287, 40652-40660, https://doi.org/10.1074/jbc.M112.419721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. El’darov, C., Vays, V. B., Vangeli, I. M., Kolosova, N. G., and Bakeeva, L. E. (2015) Morphometric examination of mitochondrial ultrastructure in aging Cardiomyocytes, Biochemistry (Moscow), 80, 604-609, https://doi.org/10.1134/S0006297915050132.

    Article  CAS  Google Scholar 

  40. Manczak, M., Sheiko, T., Craigen, W. J., and Reddy, P. H. (2013) Reduced VDAC1 protects against Alzheimer’s disease, mitochondria, and synaptic deficiencies, J. Alzheimer’s Disease, 37, 679-690, https://doi.org/10.3233/JAD-130761.

    Article  CAS  Google Scholar 

  41. Manczak, M., and Reddy, P. H. (2013) RNA silencing of genes involved in Alzheimer’s disease enhances mitochondrial function and synaptic activity, Biochim. Biophys. Acta, 1832, 2368-2378, https://doi.org/10.1016/j.bbadis.2013.09.008.

    Article  CAS  PubMed  Google Scholar 

  42. Stefanova, N. A., Muraleva, N. A., Maksimova, K. Y., Rudnitskaya, E. A., Kiseleva, E., Telegina, D. V., and Kolosova, N. G. (2016) An antioxidant specifically targeting mitochondria delays progression of Alzheimer’s disease-like pathology, Aging (Albany NY), 8, 2713, https://doi.org/10.18632/aging.101054.

    Article  CAS  Google Scholar 

  43. Stefanova, N. A., Ershov, N. I., and Kolosova, N. G. (2019) Suppression of Alzheimer’s disease-like pathology progression by mitochondria-targeted antioxidant SkQ1: a transcriptome profiling study, Oxid. Med. Cell Longev., 2019, 3984906, https://doi.org/10.1155/2019/3984906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Muraleva, N. A., Stefanova, N. A., and Kolosova, N. G. (2020) SkQ1 suppresses the p38 MAPK signaling pathway involved in Alzheimer’s disease-like pathology in OXYS rats, Antioxidants, 9, 676, https://doi.org/10.3390/antiox9080676.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Laser scanning microscopy was performed at the Microscopy Center of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences.

Funding

The study was supported by the Ministry of Science and High Education of the Russian Federation (project no. 14. W03.31.0034, megagrant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Kolosova.

Ethics declarations

Authors declare no conflict of interests. All procedures performed with the animals were in accordance with the ethical standards of the involved Institutions and with the approved legal acts of the Russian Federation and International organizations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telegina, D.V., Kozhevnikova, O.S., Fursova, A.Z. et al. Autophagy as a Target for the Retinoprotective Effects of the Mitochondria-Targeted Antioxidant SkQ1. Biochemistry Moscow 85, 1640–1649 (2020). https://doi.org/10.1134/S0006297920120159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920120159

Keywords

Navigation