Skip to main content
Log in

Targeting Inflammation and Oxidative Stress as a Therapy for Ischemic Kidney Injury

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Inflammation and oxidative stress are the main pathological processes that accompany ischemic injury of kidneys and other organs. Based on this, these factors are often chosen as a target for treatment of acute kidney injury (AKI) in a variety of experimental and clinical studies. Note, that since these two components are closely interrelated during AKI development, substances that treat one of the processes often affect the other. The review considers several groups of promising nephroprotectors that have both anti-inflammatory and antioxidant effects. For example, many antioxidants, such as vitamins, polyphenolic compounds, and mitochondria-targeted antioxidants, not only reduce production of the reactive oxygen species in the cell but also modulate activity of the immune cells. On the other hand, immunosuppressors and non-steroidal anti-inflammatory drugs that primarily affect inflammation also reduce oxidative stress under some conditions. Another group of therapeutics is represented by hormones, such as estrogens and melatonin, which significantly reduce severity of the kidney damage through modulation of both these processes. We conclude that drugs with combined anti-inflammatory and antioxidant capacities are the most promising agents for the treatment of acute ischemic kidney injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AKI:

acute kidney injury

IL:

interleukin

I/R:

ischemia/reperfusion

ROS:

reactive oxygen species

References

  1. Ronco, C., Bellomo, R., and Kellum, J. A. (2019) Acute kidney injury, Lancet, 394, 1949-1964, https://doi.org/10.1016/S0140-6736(19)32563-2.

    Article  CAS  PubMed  Google Scholar 

  2. Yang, Y., Song, M., Liu, Y., Liu, H., Sun, L., Peng, Y., Liu, F., Venkatachalam, M. A., and Dong, Z. (2016) Renoprotective approaches and strategies in acute kidney injury, Pharmacol. Ther., 163, 58-73, https://doi.org/10.1016/j.pharmthera.2016.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bonventre, J. V., and Yang, L. (2011) Cellular pathophysiology of ischemic acute kidney injury, J. Clin. Invest., 121, 4210-4221, https://doi.org/10.1172/JCI45161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rovcanin, B., Medic, B., Kocic, G., Cebovic, T., Ristic, M., and Prostran, M. (2016) Molecular dissection of renal ischemia-reperfusion: oxidative stress and cellular events, Curr. Med. Chem., 23, 1965-1980, https://doi.org/10.2174/0929867323666160112122858.

    Article  CAS  PubMed  Google Scholar 

  5. Zuk, A., and Bonventre, J. V. (2016) Acute kidney injury, Annu. Rev. Med., 67, 293-307, https://doi.org/10.1146/annurev-med-050214-013407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Soares, R. O. S., Losada, D. M., Jordani, M. C., Évora, P., and Castro-E-Silva, O. (2019) Ischemia/reperfusion injury revisited: an overview of the latest pharmacological strategies, Int. J. Mol. Sci., 20, 1-45, https://doi.org/10.3390/ijms20205034.

    Article  CAS  Google Scholar 

  7. Belavgeni, A., Meyer, C., Stumpf, J., Hugo, C., and Linkermann, A. (2020) Ferroptosis and necroptosis in the kidney, Cell Chem. Biol., 27, 448-462, https://doi.org/10.1016/j.chembiol.2020.03.016.

    Article  CAS  PubMed  Google Scholar 

  8. Jankauskas, S. S., Pevzner, I. B., Andrianova, N. V., Zorova, L. D., Popkov, V. A., Silachev, D. N., Kolosova, N. G., Plotnikov, E. Y., and Zorov, D. B. (2017) The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy, Sci. Rep., 7, 1-9, https://doi.org/10.1038/srep44430.

    Article  CAS  Google Scholar 

  9. Van den Akker, E. K., Manintveld, O. C., Hesselink, D. A., de Bruin, R., Ijzermans, J., and Dor, F. J. (2013) Protection against renal ischemia-reperfusion injury by ischemic postconditioning, Transplant. J., 95, 1299-1305, https://doi.org/10.1097/TP.0b013e318281b934.

    Article  Google Scholar 

  10. Andrianova, N. V, Jankauskas, S. S., Zorova, L. D., Pevzner, I. B., Popkov, V. A., et al. (2018) Mechanisms of age-dependent loss of dietary restriction protective effects in acute kidney injury, Cells, 7, 1-18, https://doi.org/10.3390/cells7100178.

    Article  CAS  Google Scholar 

  11. Brezis, M., Rosen, S., Silva, P., and Epstein, F. H. (1984) Renal ischemia: a new perspective, Kidney Int., 26, 375-383, https://doi.org/10.1038/ki.1984.185.

    Article  CAS  PubMed  Google Scholar 

  12. Lieberthal, W., and Levine, J. S. (1996) Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury, Am. J. Physiol., 271, 477-488, https://doi.org/10.1152/ajprenal.1996.271.3.f477.

    Article  Google Scholar 

  13. Chouchani, E. T., Pell, V. R., James, A. M., Work, L. M., Saeb-Parsy, K., Frezza, C., Krieg, T., and Murphy, M. P. (2016) A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury, Cell Metab., 23, 254-263, https://doi.org/10.1016/j.cmet.2015.12.009.

    Article  CAS  PubMed  Google Scholar 

  14. Plotnikov, E. Y., Kazachenko, A. V., Vyssokikh, M. Y., Vasileva, A. K., Tcvirkun, D. V., Isaev, N. K., Kirpatovsky, V. I., and Zorov, D. B. (2007) The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney, Kidney Int., 72, 1493-502, https://doi.org/10.1038/sj.ki.5002568.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng, L., Gao, W., Hu, C., Yang, C., and Rong, R. (2019) Immune cells in ischemic acute kidney injury, Curr. Protein Pept. Sci., 20, 770-776, https://doi.org/10.2174/1389203720666190507102529.

    Article  CAS  PubMed  Google Scholar 

  16. Awad, A. S., Rouse, M., Huang, L., Vergis, A. L., Reutershan, J., et al. (2009) Compartmentalization of neutrophils in the kidney and lung following acute ischemic kidney injury, Kidney Int., 75, 689-698, https://doi.org/10.1038/ki.2008.648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bolisetty, S., and Agarwal, A. (2009) Neutrophils in acute kidney injury: not neutral any more, Kidney Int., 75, 674-676, https://doi.org/10.1038/ki.2008.689.

    Article  CAS  PubMed  Google Scholar 

  18. Jang, H. R., and Rabb, H. (2009) The innate immune response in ischemic acute kidney injury, Clin. Immunol., 130, 41-50, https://doi.org/10.1038/nrneph.2014.180.

    Article  CAS  PubMed  Google Scholar 

  19. Day, Y. J., Huang, L., Ye, H., Linden, J., and Okusa, M. D. (2005) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages, Am. J. Physiol. Ren. Physiol., 288, 722-731, https://doi.org/10.1152/ajprenal.00378.2004.

    Article  CAS  Google Scholar 

  20. Rabb, H., Daniels, F., O’Donnell, M., Haq, M., Saba, S. R., Keane, W., and Tang, W. W. (2000) Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice, Am. J. Physiol. Renal. Physiol., 279, 525-531, https://doi.org/10.1152/ajprenal.2000.279.3.F525.

    Article  Google Scholar 

  21. Burne, M. J., Daniels, F., El Ghandour, A., Mauiyyedi, S., Colvin, R. B., O’Donnell, M. P., and Rabb, H. (2001) Identification of the CD4+ T cell as a major pathogenic factor in ischemic acute renal failure, J. Clin. Invest., 108, 1283-1290, https://doi.org/10.1172/JCI12080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Austen, W. G., Zhang, M., Chan, R., Friend, D., Hechtman, H. B., Carroll, M. C., and Moore, F. D. (2004) Murine hindlimb reperfusion injury can be initiated by a self-reactive monoclonal IgM, Surgery, 136, 401-406, https://doi.org/10.1016/j.surg.2004.05.016.

    Article  PubMed  Google Scholar 

  23. Linfert, D., Chowdhry, T., and Rabb, H. (2009) Lymphocytes and ischemia-reperfusion injury, Transplant. Rev. (Orlando), 23, 1-10, https://doi.org/10.1016/j.trre.2008.08.003.

    Article  Google Scholar 

  24. Rabb, H., Griffin, M. D., McKay, Di. B., Swaminathan, S., Pickkers, P., Rosner, M. H., Kellum, J. A., and Ronco, C. (2016) Inflammation in AKI: current understanding, key questions, and knowledge gaps, J. Am. Soc. Nephrol., 27, 371-379, https://doi.org/10.1681/ASN.2015030261.

    Article  CAS  PubMed  Google Scholar 

  25. Mulay, S. R., Holderied, A., Kumar, S. V., and Anders, H.-J. (2016) Targeting nflammation in so-called acute kidney injury, Semin. Nephrol., 36, 17-30, https://doi.org/10.1016/j.semnephrol.2016.01.006.

    Article  CAS  PubMed  Google Scholar 

  26. Amir Aslani, B., and Ghobadi, S. (2016) Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system, Life Sci., 146, 163-173, https://doi.org/10.1016/j.lfs.2016.01.014.

    Article  CAS  PubMed  Google Scholar 

  27. Carr, A., and Maggini, S. (2017) Vitamin C and immune function, Nutrients, 9, 1-25, https://doi.org/10.3390/nu9111211.

    Article  CAS  Google Scholar 

  28. Korkmaz, A., and Kolankaya, D. (2009) The protective effects of ascorbic acid against renal ischemia-reperfusion injury in male rats, Ren. Fail., 31, 36-43, https://doi.org/10.1080/08860220802546271.

    Article  CAS  PubMed  Google Scholar 

  29. Norio, K., Wikström, M., Salmela, K., Kyllönen, L., and Lindgren, L. (2003) Ascorbic acid against reperfusion injury in human renal transplantation, Transpl. Int., 16, 578-583, https://doi.org/10.1007/s00147-003-0588-0.

    Article  CAS  Google Scholar 

  30. Levine, M., Padayatty, S. J., and Espey, M. G. (2011) Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries, Adv. Nutr., 2, 7888, https://doi.org/10.3945/an.110.000109.

    Article  CAS  Google Scholar 

  31. Salehipour, M., Monabbati, A., Salahi, H., Nikeghbalian, S., Bahador, A., et al. (2010) Protective effect of parenteral vitamin E on ischemia-reperfusion injury of rabbit kidney, Urology, 75, 858-861, https://doi.org/10.1016/j.urology.2009.04.062.

    Article  PubMed  Google Scholar 

  32. Yamamoto, S., Hagiwara, S., Hidaka, S., Shingu, C., Goto, K., Kashima, K., and Noguchi, T. (2011) The antioxidant EPC-K1 attenuates renal ischemia-reperfusion injury in a rat model, Am. J. Nephrol., 33, 485-490, https://doi.org/10.1159/000327820.

    Article  CAS  PubMed  Google Scholar 

  33. Koga, H., Hagiwara, S., Mei, H., Hiraoka, N., Kusaka, J., Goto, K., Kashima, K., and Noguchi, T. (2012) The vitamin E derivative, ESeroS-GS, attenuates renal ischemia-reperfusion injury in rat, J. Surg. Res., 176, 220-225, https://doi.org/10.1016/j.jss.2011.07.039.

    Article  CAS  PubMed  Google Scholar 

  34. Rabl, H., Khoschsorur, G., Colombo, T., Petritsch, P., Rauchenwald, M., et al. (1993) A multivitamin infusion prevents lipid peroxidation and improves transplantation performance, Kidney Int., 43, 912-917, https://doi.org/10.1038/ki.1993.128.

    Article  CAS  PubMed  Google Scholar 

  35. Takaoka, M., Ohkita, M., Kobayashi, Y., Yuba, M., and Matsumura, Y. (2002) Protective effect of α-lipoic acid against ischaemic acute renal failure in rats, Clin. Exp. Pharmacol. Physiol., 29, 189-194, https://doi.org/10.1046/j.1440-1681.2002.03624.x.

    Article  CAS  PubMed  Google Scholar 

  36. Şehirli, Ö., Şener, E., Çetinel, Ş., Yüksel, M., Gedik, N., and Şener, G. (2008) α-Lipoic acid protects against renal ischaemia-reperfusion injury in rats, Clin. Exp. Pharmacol. Physiol., 35, 249-255, https://doi.org/10.1111/j.1440-1681.2007.04810.x.

    Article  CAS  PubMed  Google Scholar 

  37. Safa, J., Ardalan, M. R., Rezazadehsaatlou, M., Mesgari, M., Mahdavi, R., and Jadid, M. P. (2014) Effects of alpha lipoic acid supplementation on serum levels of IL-8 and TNF-α in patient with ESRD undergoing hemodialysis, Int. Urol. Nephrol., 46, 1633-1638, https://doi.org/10.1007/s11255-014-0688-z.

    Article  CAS  PubMed  Google Scholar 

  38. Teichert, J., Tuemmers, T., Achenbach, H., Preiss, C., Hermann, R., Ruus, P., and Preiss, R. (2005) Pharmacokinetics of alpha-lipoic acid in subjects with severe kidney damage and end-stage renal disease, J. Clin. Pharmacol., 45, 313-328, https://doi.org/10.1177/0091270004270792.

    Article  CAS  PubMed  Google Scholar 

  39. Koga, H., Hagiwara, S., Kusaka, J., Goto, K., Uchino, T., Shingu, C., Kai, S., and Noguchi, T. (2012) New α-lipoic acid derivative, DHL-HisZn, ameliorates renal ischemia-reperfusion injury in rats, J. Surg. Res., 174, 352-358, https://doi.org/10.1016/j.jss.2011.01.011.

    Article  CAS  PubMed  Google Scholar 

  40. Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M., and Rahu, N. (2016) Oxidative stress and inflammation: what polyphenols can do for us? Oxid. Med. Cell. Longev., 2016, 1-9, https://doi.org/10.1155/2016/7432797.

    Article  CAS  Google Scholar 

  41. Yahfoufi, N., Alsadi, N., Jambi, M., and Matar, C. (2018) The immunomodulatory and anti-inflammatory role of polyphenols, Nutrients, 10, 1-23, https://doi.org/10.3390/nu10111618.

    Article  CAS  Google Scholar 

  42. Awad, A. S., and El-Sharif, A. A. (2011) Curcumin immune-mediated and anti-apoptotic mechanisms protect against renal ischemia/reperfusion and distant organ induced injuries, Int. Immunopharmacol., 11, 992-996, https://doi.org/10.1016/j.intimp.2011.02.015.

    Article  CAS  PubMed  Google Scholar 

  43. Trujillo, J., Chirino, Y. I., Molina-Jijón, E., Andérica-Romero, A. C., Tapia, E., and Pedraza-Chaverrí, J. (2013) Renoprotective effect of the antioxidant curcumin: recent findings, Redox Biol., 1, 448-456, https://doi.org/10.1016/j.redox.2013.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Najafi, H., Ashtiyani, S., Sayedzadeh, S., Yarijani, Z., and Fakhri, S. (2015) Therapeutic effects of curcumin on the functional disturbances and oxidative stress induced by renal ischemia/reperfusion in rats, Avicenna J. Phytomedicine, 5, 576-586.

    CAS  Google Scholar 

  45. Hongtao, C., Youling, F., Fang, H., Huihua, P., Jiying, Z., and Jun, Z. (2018) Curcumin alleviates ischemia reperfusion-induced late kidney fibrosis through the APPL1/Akt signaling pathway, J. Cell. Physiol., 233, 8588-8596, https://doi.org/10.1002/jcp.26536.

    Article  CAS  PubMed  Google Scholar 

  46. Moreillon, J. J., Bowden, R. G., Deike, E., Griggs, J., Wilson, R., Shelmadine, B., Cooke, M., and Beaujean, A. (2013) The use of an anti-inflammatory supplement in patients with chronic kidney disease, J. Complement. Integr. Med., 10, 143-152, https://doi.org/10.1515/jcim-2012-0011.

    Article  Google Scholar 

  47. Kahraman, A., Erkasap, N., Serteser, M., and Köken, T. (2003) Protective effect of quercetin on renal ischemia/reperfusion injury in rats, J. Nephrol., 16, 219-224.

    CAS  PubMed  Google Scholar 

  48. Shoskes, D. A. (1998) Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: a new class of renoprotective agents, Transplantation, 66, 147-152, https://doi.org/10.1097/00007890-199807270-00001.

    Article  CAS  PubMed  Google Scholar 

  49. Shoskes, D., Lapierre, C., Cruz-Corerra, M., Muruve, N., Rosario, R., et al. (2005) Beneficial effects of the bioflavonoids curcumin and quercetin on early function in cadaveric renal transplantation: a randomized placebo controlled trial, Transplantation, 80, 1556-1559, https://doi.org/10.1097/01.tp.0000183290.64309.21.

    Article  CAS  PubMed  Google Scholar 

  50. Giovannini, L., Migliori, M., Longoni, B. M., Das, D. K., Bertelli, A. A. E., et al. (2001) Resveratrol, a polyphenol found in wine, reduces ischemia reperfusion injury in rat kidneys, J. Cardiovasc. Pharmacol., 37, 262-270, https://doi.org/10.1097/00005344-200103000-00004.

    Article  CAS  PubMed  Google Scholar 

  51. Bienholz, A., Pang, R. M., Guberina, H., Rauen, U., Witzke, O., et al. (2017) Resveratrol does not protect from ischemia-induced acute kidney injury in an in vivo rat model, Kidney Blood Press. Res., 42, 1090-1103, https://doi.org/10.1159/000485606.

    Article  CAS  PubMed  Google Scholar 

  52. Korkmaz, A., and Kolankaya, D. (2016) Inhibiting inducible nitric oxide synthase with rutin reduces renal ischemia/reperfusion injury, Can. J. Surg., 56, 6-14, https://doi.org/10.1503/cjs.004811.

    Article  Google Scholar 

  53. Kezic, A., Spasojevic, I., Lezaic, V., and Bajcetic, M. (2016) Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury, Oxid. Med. Cell. Longev., 2016, 1-12, https://doi.org/10.1155/2016/2950503.

    Article  CAS  Google Scholar 

  54. Plotnikov, E. Y., Chupyrkina, A. A., Jankauskas, S. S., Pevzner, I. B., Silachev, D. N., Skulachev, V. P., and Zorov, D. B. (2011) Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion, Biochim. Biophys. Acta, 1812, 77-86, https://doi.org/10.1016/j.bbadis.2010.09.008.

    Article  CAS  PubMed  Google Scholar 

  55. Jankauskas, S. S., Andrianova, N. V., Alieva, I. B., Prusov, A. N., Matsievsky, D. et al. (2016) Dysfunction of kidney endothelium after ischemia/reperfusion and its prevention by mitochondria-targeted antioxidant, Biochemistry (Moscow), 81, 1538-1548, https://doi.org/10.1134/S0006297916120154.

    Article  CAS  Google Scholar 

  56. Bakeeva, L. E., Barskov, I. V., Egorov, M. V., Isaev, N. K., Kapelko, V. I., et al. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke), Biochemistry (Moscow), 73, 1288-1299, https://doi.org/10.1134/S000629790812002X.

    Article  CAS  Google Scholar 

  57. Dare, A. J., Bolton, E. A., Pettigrew, G. J., Bradley, J. A., Saeb-Parsy, K., and Murphy, M. P. (2015) Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ, Redox Biol., 5, 163-168, https://doi.org/10.1016/j.redox.2015.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mitchell, T., Rotaru, D., Saba, H., Smith, R. A. J., Murphy, M. P., and MacMillan-Crow, L. A. (2011) The mitochondria-targeted antioxidant mitoquinone protects against cold storage injury of renal tubular cells and rat kidneys, J. Pharmacol. Exp. Ther., 336, 682-692, https://doi.org/10.1124/jpet.110.176743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Szeto, H. H., Liu, S., Soong, Y., Wu, D., Darrah, S. F., et al. (2011) Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury, J. Am. Soc. Nephrol., 22, 1041-1052, https://doi.org/10.1681/ASN.2010080808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, D., Jin, F., Shu, G., Xu, X., Qi, J., et al. (2019) Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes, Biomaterials, 211, 57-67, https://doi.org/10.1016/j.biomaterials.2019.04.034.

    Article  CAS  PubMed  Google Scholar 

  61. Liu, Y., Wang, Y., Ding, W., and Wang, Y. (2018) Mito-TEMPO alleviates renal fibrosis by reducing inflammation, mitochondrial dysfunction, and endoplasmic reticulum stress, Oxid. Med. Cell. Longev., 2018, 1-13, https://doi.org/10.1155/2018/5828120.

    Article  CAS  Google Scholar 

  62. Sheu, S. S., Nauduri, D., and Anders, M. W. (2006) Targeting antioxidants to mitochondria: a new therapeutic direction, Biochim. Biophys. Acta Mol. Basis Dis., 1762, 256-265, https://doi.org/10.1016/j.bbadis.2005.10.007.

    Article  CAS  Google Scholar 

  63. Bolisetty, S., Traylor, A., Zarjou, A., Johnson, M. S., Benavides, G. A., et al. (2013) Mitochondria-targeted heme oxygenase-1 decreases oxidative stress in renal epithelial cells, Am. J. Physiol. Ren. Physiol., 305, F255-F264, https://doi.org/10.1152/ajprenal.00160.2013.

    Article  CAS  Google Scholar 

  64. Mitchell, T., Chacko, B. K., and Darley-Usmar, V. (2012) Controlling radicals in the powerhouse: development of mitoSOD, Chem. Biol., 19, 1217-1218, https://doi.org/10.1016/j.chembiol.2012.10.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Salom, M. G., Ramírez, P., Carbonell, L. F., López Conesa, E., Cartagena, J., et al. (1998) Protective effect of N-acetyl-L-cysteine on the renal failure induced by inferior vena cava occlusion, Transplantation, 65, 1315-1321, https://doi.org/10.1097/00007890-199805270-00006.

    Article  CAS  PubMed  Google Scholar 

  66. Small, D. M., Sanchez, W. Y., Roy, S. F., Morais, C., Brooks, H. L., et al. (2018) N-acetyl-cysteine increases cellular dysfunction in progressive chronic kidney damage after acute kidney injury by dampening endogenous antioxidant responses, Am. J. Physiol. Ren. Physiol., 314, 956-968, https://doi.org/10.1152/ajprenal.00057.2017.

    Article  CAS  Google Scholar 

  67. Sahin, G., Yalcin, A. U., and Akcar, N. (2007) Effect of N-acetylcysteine on endothelial dysfunction in dialysis patients, Blood Purif., 25, 309-315, https://doi.org/10.1159/000106103.

    Article  CAS  PubMed  Google Scholar 

  68. Orban, J. C., Quintard, H., Cassuto, E., Jambou, P., Samat-Long, C., and Ichai, C. (2015) Effect of N-acetylcysteine pretreatment of deceased organ donors on renal allograft function: a randomized controlled trial, Transplantation, 99, 746-753, https://doi.org/10.1097/TP.0000000000000395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moghaddas, A., and Dashti-Khavidaki, S. (2018) L-carnitine and potential protective effects against ischemia-reperfusion injury in noncardiac organs: from experimental data to potential clinical applications, J. Diet. Suppl., 15, 740-756, https://doi.org/10.1080/19390211.2017.1359221.

    Article  CAS  PubMed  Google Scholar 

  70. Görür, S., Baǧdatoǧlu, Ö. T., and Polat, G. (2005) Protective effect of L-carnitine on renal ischaemia-reperfusion injury in the rat, Cell Biochem. Funct., 23, 151-155, https://doi.org/10.1002/cbf.1159.

    Article  PubMed  Google Scholar 

  71. Mister, M., Noris, M., Szymczuk, J., Azzollini, N., Aiello, S., et al. (2002) Propionyl-L-carnitine prevents renal function deterioration due to ischemia/reperfusion, Kidney Int., 61, 1064-1078, https://doi.org/10.1046/j.1523-1755.2002.00212.x.

    Article  CAS  PubMed  Google Scholar 

  72. Jafari, A., Khatami, M. R., Dashti-Khavidaki, S., Lessan-Pezeshki, M., Abdollahi, A., and Moghaddas, A. (2017) Protective effects of L-carnitine against delayed graft function in kidney transplant recipients: a pilot, randomized, double-blinded, placebo-controlled clinical trial, J. Ren. Nutr., 27, 113-126, https://doi.org/10.1053/j.jrn.2016.11.002.

    Article  CAS  PubMed  Google Scholar 

  73. Doi, K., Suzuki, Y., Nakao, A., Fujita, T., and Noiri, E. (2004) Radical scavenger edaravone developed for clinical use ameliorates ischemia/reperfusion injury in rat kidney, Kidney Int., 65, 1714-1723, https://doi.org/10.1111/j.1523-1755.2004.00567.x.

    Article  CAS  PubMed  Google Scholar 

  74. Kamouchi, M., Sakai, H., Kiyohara, Y., Minematsu, K., Hayashi, K., and Kitazono, T. (2013) Acute kidney injury and edaravone in acute ischemic stroke: the fukuoka stroke registry, J. Stroke Cerebrovasc. Dis., 22, 470-476, https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.05.018.

    Article  Google Scholar 

  75. Kizilgun, M., Poyrazoglu, Y., Oztas, Y., Yaman, H., Cakir, E., et al. (2011) Beneficial effects of N-acetylcysteine and ebselen on renal ischemia/reperfusion injury, Ren. Fail., 33, 512-517, https://doi.org/10.3109/0886022X.2011.574767.

    Article  CAS  PubMed  Google Scholar 

  76. Stoyanovsky, D. A., Jiang, J., Murphy, M. P., Epperly, M., Zhang, X., et al. (2014) Design and synthesis of a mitochondria-targeted mimic of glutathione peroxidase, mitoebselen-2, as a radiation mitigator, ACS Med. Chem. Lett., 5, 1304-1307, https://doi.org/10.1021/ml5003635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Allison, T. L. (2016) Immunosuppressive therapy in transplantation, Nurs. Clin. North Am., 51, 107-120, https://doi.org/10.1016/j.cnur.2015.10.008.

    Article  PubMed  Google Scholar 

  78. Zaza, G., Leventhal, J., Signorini, L., Gambaro, G., and Cravedi, P. (2019) Effects of antirejection drugs on inate immune cells after kidney transplantation, Front. Immunol., 10, 1-10, https://doi.org/10.3389/fimmu.2019.02978.

    Article  CAS  Google Scholar 

  79. Höcherl, K., Dreher, F., Vitzthum, H., Köhler, J., and Kurtz, A. (2002) Cyclosporine a suppresses cyclooxygenase-2 expression in the rat kidney, J. Am. Soc. Nephrol., 13, 2427-2436, https://doi.org/10.1097/01.ASN.0000031702.86799.B9.

    Article  PubMed  Google Scholar 

  80. Lemoine, S., Pillot, B., Rognant, N., Augeul, L., Rayberin, M., et al. (2015) Postconditioning with cyclosporine a reduces early renal dysfunction by inhibiting mitochondrial permeability transition, Transplantation, 99, 717-723, https://doi.org/10.1097/TP.0000000000000530.

    Article  CAS  PubMed  Google Scholar 

  81. Wu, Q., Wang, X., Nepovimova, E., Wang, Y., Yang, H., and Kuca, K. (2018) Mechanism of cyclosporine A nephrotoxicity: oxidative stress, autophagy, and signalings, Food Chem. Toxicol., 118, 889-907, https://doi.org/10.1016/j.fct.2018.06.054.

    Article  CAS  PubMed  Google Scholar 

  82. Wu, Q., and Kuca, K. (2018) Metabolic fathway of cyclosporine A and its correlation with nephrotoxicity, Curr. Drug Metab., 20, 84-90, https://doi.org/10.2174/1389200219666181031113505.

    Article  CAS  Google Scholar 

  83. Van Thiel, D. H., Sakr, M., Zetti, G., and Mcclain, C. (1992) FK 506 reduces the injury experienced following renal ischemia and reperfusion, Ren. Fail., 14, 285-288, https://doi.org/10.3109/08860229209106630.

    Article  CAS  PubMed  Google Scholar 

  84. Yang, C. W., Lee, S. H., Lim, S. W., Jung, J. Y., Kim, W. Y., et al. (2002) Cyclosporine or FK506 decrease mature epidermal growth factor protein expression and renal tubular regeneration in rat kidneys with ischemia/reperfusion injury, Nephron, 92, 914-921, https://doi.org/10.1159/000065435.

    Article  CAS  PubMed  Google Scholar 

  85. Hošková, L., Málek, I., Kopkan, L., and Kautzner, J. (2017) Pathophysiological mechanisms of calcineurin inhibitor-induced nephrotoxicity and arterial hypertension, Physiol. Res., 66, 167-180, https://doi.org/10.33549/physiolres.933332.

    Article  PubMed  Google Scholar 

  86. Dias, P. H., Oliveira, G. A., Dias, F. G., Gomes, R., Filho, R., and de Fraga, R. (2015) Effects of immunosuppression with tacrolimus and mycophenolate mofetil on renal histology and function in single kidney rats submitted to ischemia and reperfusion, Acta Cir. Bras., 30, 127-133, https://doi.org/10.1590/S0102-86502015002000007.

    Article  PubMed  Google Scholar 

  87. Sehgal, S. N. (2003) Sirolimus: its discovery, biological properties, and mechanism of action, Transplant. Proc., 35, 7-14, https://doi.org/10.1016/s0041-1345(03)00211-2.

    Article  Google Scholar 

  88. Esposito, C., Grosjean, F., Torreggiani, M., Esposito, V., Mangione, F., et al. (2011) Sirolimus prevents short-term renal changes induced by ischemia-reperfusion injury in rats, Am. J. Nephrol., 33, 239-249, https://doi.org/10.1159/000324577.

    Article  CAS  PubMed  Google Scholar 

  89. Lieberthal, W., Fuhro, R., Andry, C. C., Rennke, H., Abernathy, V. E., et al. (2001) Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells, Am. J. Physiol. Renal Physiol., 281, 693-706, https://doi.org/10.1152/ajprenal.2001.281.4.F693.

    Article  Google Scholar 

  90. Domínguez, J., Lira, F., Giacaman, A., and Mendez, G. (2011) Short-term immunossupressive treatment of the donor does not prevent ischemia-reperfusion kidney damage in the rat, Transplant. Proc., 43, 3315-3318, https://doi.org/10.1016/j.transproceed.2011.09.093.

    Article  CAS  PubMed  Google Scholar 

  91. Andrianova, N. V., Zorova, L. D., Babenko, V. A., Pevzner, I. B., Popkov, V. A., et al. (2019) Rapamycin is not protective against ischemic and cisplatin-induced kidney injury, Biochemistry (Moscow), 84, 1502-1512, https://doi.org/10.1134/S0006297919120095.

    Article  CAS  Google Scholar 

  92. Vandewalle, J., Luypaert, A., De Bosscher, K., and Libert, C. (2018) Therapeutic mechanisms of glucocorticoids, Trends Endocrinol. Metab., 29, 42-54, https://doi.org/10.1016/j.tem.2017.10.010.

    Article  CAS  PubMed  Google Scholar 

  93. Barnes, P. J. (1998) Anti-inflammatory actions of glucocorticoids: molecular mechanisms, Clin. Sci., 94, 557-572, https://doi.org/10.1042/cs0940557.

    Article  CAS  Google Scholar 

  94. Yang, N., Zhang, W., and Shi, X. M. (2008) Glucocorticoid-induced leucine zipper (GILZ) mediates glucocorticoid action and inhibits inflammatory cytokine-induced COX-2 expression, J. Cell. Biochem., 103, 1760-1771, https://doi.org/10.1002/jcb.21562.

    Article  CAS  PubMed  Google Scholar 

  95. Cain, D. W., and Cidlowski, J. A. (2017) Immune regulation by glucocorticoids, Nat. Rev. Immunol., 17, 233-247, https://doi.org/10.1038/nri.2017.1.

    Article  CAS  PubMed  Google Scholar 

  96. Song, I. H., and Buttgereit, F. (2006) Non-genomic glucocorticoid effects to provide the basis for new drug developments, Mol. Cell. Endocrinol., 246, 142-146, https://doi.org/10.1016/j.mce.2005.11.012.

    Article  CAS  PubMed  Google Scholar 

  97. Gerö, D., and Szabo, C. (2016) Glucocorticoids suppress mitochondrial oxidant production via upregulation of uncoupling protein 2 in hyperglycemic endothelial cells, PLoS One, 11, 1-26, https://doi.org/10.1371/journal.pone.0154813.

    Article  CAS  Google Scholar 

  98. Starkov, A. A. (1997) “Mild” uncoupling of mitochondria, Biosci. Rep., 17, 273-279, https://doi.org/10.1023/a:1027380527769.

    Article  CAS  PubMed  Google Scholar 

  99. Arvier, M., Lagoutte, L., Johnson, G., Dumas, J. F., Sion, B., et al. (2007) Adenine nucleotide translocator promotes oxidative phosphorylation and mild uncoupling in mitochondria after dexamethasone treatment, Am. J. Physiol. Endocrinol. Metab., 293, 1320-1324, https://doi.org/10.1152/ajpendo.00138.2007.

    Article  CAS  Google Scholar 

  100. Kumar, S., Allen, D. A., Kieswich, J. E., Patel, N. S. A., Harwood, S., et al. (2009) Dexamethasone ameliorates renal ischemia-reperfusion injury, J. Am. Soc. Nephrol., 20, 2412-2425, https://doi.org/10.1681/ASN.2008080868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Baker, R. C., Armstrong, M. A., Young, I. S., McClean, E., O’Rourke, D., et al. (2006) Methylprednisolone increases urinary nitrate concentrations and reduces subclinical renal injury during infrarenal aortic ischemia reperfusion, Ann. Surg., 244, 821-826, https://doi.org/10.1097/01.sla.0000225094.59283.b4.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Moonen, L., Geryl, H., D’Haese, P. C., and Vervaet, B. A. (2018) Short-term dexamethasone treatment transiently, but not permanently, attenuates fibrosis after acute-to-chronic kidney injury, BMC Nephrol., 19, 1-12, https://doi.org/10.1186/s12882-018-1151-7.

    Article  CAS  Google Scholar 

  103. Kainz, A., Wilflingseder, J., Mitterbauer, C., Haller, M., Burghuber, C., et al. (2010) Steroid pretreatment of organ donors to prevent postischemic renal allograft failure: a randomized, controlled trial, Ann. Intern. Med., 153, 222-230, https://doi.org/10.7326/0003-4819-153-4-201008170-00003.

    Article  PubMed  Google Scholar 

  104. Ricciotti, E., and Fitzgerald, G. A. (2011) Prostaglandins and inflammation, Arterioscler. Thromb. Vasc. Biol., 31, 986-1000, https://doi.org/10.1161/ATVBAHA.110.207449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Warner, T. D., and Mitchell, J. A. (2004) Cyclooxygenases: new forms, new inhibitors, and lessons from the clinic, FASEB J., 18, 790-804, https://doi.org/10.1096/fj.03-0645rev.

    Article  CAS  PubMed  Google Scholar 

  106. Nørregaard, R., Kwon, T.-H., and Frøkiær, J. (2015) Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney, Kidney Res. Clin. Pract., 34, 194-200, https://doi.org/10.1016/j.krcp.2015.10.004.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ungprasert, P., Cheungpasitporn, W., Crowson, C. S., and Matteson, E. L. (2015) Individual non-steroidal anti-inflammatory drugs and risk of acute kidney injury: a systematic review and meta-analysis of observational studies, Eur. J. Intern. Med., 26, 285-291, https://doi.org/10.1016/j.ejim.2015.03.008.

    Article  CAS  PubMed  Google Scholar 

  108. McMurray, R. W., and Hardy, K. J. (2002) Cox-2 inhibitors: today and tomorrow, Am. J. Med. Sci., 323, 181-189, https://doi.org/10.1097/00000441-200204000-00003.

    Article  PubMed  Google Scholar 

  109. Senbel, A. M., AbdelMoneim, L., and Omar, A. G. (2014) Celecoxib modulates nitric oxide and reactive oxygen species in kidney ischemia/reperfusion injury and rat aorta model of hypoxia/reoxygenation, Vasc. Pharmacol., 62, 24-31, https://doi.org/10.1016/j.vph.2014.04.004.

    Article  CAS  Google Scholar 

  110. Suleyman, Z., Sener, E., Kurt, N., Comez, M., and Yapanoglu, T. (2015) The effect of nimesulide on oxidative damage inflicted by ischemia-reperfusion on the rat renal tissue, Ren. Fail., 37, 323-331, https://doi.org/10.3109/0886022X.2014.985996.

    Article  CAS  PubMed  Google Scholar 

  111. Bonventre, J. V. (2007) Pathophysiology of acute kidney injury: roles of potential inhibitors of inflammation, Acute Kidney Injury, 156, 39-46, https://doi.org/10.1159/000102069.

    Article  CAS  Google Scholar 

  112. Tasdemir, C., Tasdemir, S., Vardi, N., Ates, B., Parlakpinar, H., et al. (2012) Protective effect of infliximab on ischemia/reperfusion-induced damage in rat kidney, Ren. Fail., 34, 1144-1149, https://doi.org/10.3109/0886022X.2012.717490.

    Article  CAS  PubMed  Google Scholar 

  113. Neri, F., Puviani, L., Tsivian, M., Prezzi, D., Pacilé, V., et al. (2007) Protective effect of an inhibitor of interleukin-8 (meraxin) from ischemia and reperfusion injury in a rat model of kidney transplantation, Transplant. Proc., 39, 1771-1772, https://doi.org/10.1016/j.transproceed.2007.05.018.

    Article  CAS  PubMed  Google Scholar 

  114. Kelly, K. J., Williams, W. W., Colvin, R. B., and Bonventre, J. V. (1994) Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury, Proc. Natl. Acad. Sci. USA, 91, 812-816, https://doi.org/10.1073/pnas.91.2.812.

    Article  CAS  PubMed  Google Scholar 

  115. Singbartl, K., and Klaus, L. (2000) Protection from ischemia-reperfusion induced severe acute renal failure by blocking E-selectin, Crit. Care Med., 28, 2507-2514, https://doi.org/10.1097/00003246-200007000-00053.

    Article  CAS  PubMed  Google Scholar 

  116. Sood, P., and Hariharan, S. (2018) Anti-CD20 blocker rituximab in kidney transplantation, Transplantation, 102, 44-58, https://doi.org/10.1097/TP.0000000000001849.

    Article  CAS  PubMed  Google Scholar 

  117. Kim, H. J., Park, S. J., Koo, S., Cha, H. J., Lee, J. S., Kwon, B., and Cho, H. R. (2014) Inhibition of kidney ischemia-reperfusion injury through local infusion of a TLR2 blocker, J. Immunol. Methods, 407, 146-150, https://doi.org/10.1016/j.jim.2014.03.014.

    Article  CAS  PubMed  Google Scholar 

  118. Dong, J., Pratt, J. R., Smith, R. A., Dodd, I., and Sacks, S. H. (1999) Strategies for targeting complement inhibitors in ischaemia/reperfusion injury, Mol. Immunol., 36, 957-963, https://doi.org/10.1016/s0161-5890(99)00118-2.

    Article  CAS  PubMed  Google Scholar 

  119. Zilberman-Itskovich, S., Abu-Hamad, R., Stark, M., and Efrati, S. (2019) Effect of anti-C5 antibody on recuperation from ischemia/reperfusion-induced acute kidney injury, Ren. Fail., 41, 967-975, https://doi.org/10.1080/0886022X.2019.1677248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Danobeitia, J. S., Ziemelis, M., Ma, X., Zitur, L. J., Zens, T., et al. (2017) Complement inhibition attenuates acute kidney injury after ischemia-reperfusion and limits progression to renal fibrosis in mice, PLoS One, 12, 1-20, https://doi.org/10.1371/journal.pone.0183701.

    Article  CAS  Google Scholar 

  121. Kaabak, M., Babenko, N., Shapiro, R., Zokoyev, A., Dymova, O., and Kim, E. (2018) A prospective randomized, controlled trial of eculizumab to prevent ischemia-reperfusion injury in pediatric kidney transplantation, Pediatr. Transplant., 22, 1-8, https://doi.org/10.1111/petr.13129.

    Article  CAS  Google Scholar 

  122. Hutchens, M. P., Dunlap, J., Hurn, P. D., and Jarnberg, P. O. (2008) Renal ischemia: does sex matter? Anesth. Analg., 107, 239-249, https://doi.org/10.1213/ane.0b013e318178ca42.

    Article  PubMed  Google Scholar 

  123. Hutchens, M. P., Fujiyoshi, T., Komers, R., Herson, P. S., and Anderson, S. (2012) Estrogen protects renal endothelial barrier function from ischemia-reperfusion in vitro and in vivo, Am. J. Physiol. Ren. Physiol., 303, 377-385, https://doi.org/10.1152/ajprenal.00354.2011.

    Article  CAS  Google Scholar 

  124. Popkov, V. A., Andrianova, N. V., Manskikh, V. N., Silachev, D. N., Pevzner, I. B., et al. (2018) Pregnancy protects the kidney from acute ischemic injury, Sci. Rep., 8, 14534, 1-11, https://doi.org/10.1038/s41598-018-32801-8.

    Article  CAS  Google Scholar 

  125. Wu, C. C., Chang, C. Y., Chang, S. T., and Chen, S. H. (2016) 17β-estradiol accelerated renal tubule regeneration in male rats after ischemia/reperfusion-induced acute kidney injury, Shock, 46, 158-163, https://doi.org/10.1097/SHK.0000000000000586.

    Article  CAS  PubMed  Google Scholar 

  126. Park, K. M., Kim, J. I., Ahn, Y., Bonventre, A. J., and Bonventre, J. V. (2004) Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury, J. Biol. Chem., 279, 52282-52292, https://doi.org/10.1074/jbc.M407629200.

    Article  CAS  PubMed  Google Scholar 

  127. Kovats, S. (2012) Estrogen receptors regulate an inflammatory pathway of dendritic cell differentiation: mechanisms and implications for immunity, Horm. Behav., 62, 254-262, https://doi.org/10.1016/j.yhbeh.2012.04.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Straub, R. H. (2007) The complex role of estrogens in inflammation, Endocr. Rev., 28, 521-574, https://doi.org/10.1210/er.2007-0001.

    Article  CAS  PubMed  Google Scholar 

  129. Trigunaite, A., Dimo, J., and Jørgensen, T. N. (2015) Suppressive effects of androgens on the immune system, Cell. Immunol., 294, 87-94, https://doi.org/10.1016/j.cellimm.2015.02.004.

    Article  CAS  PubMed  Google Scholar 

  130. Kozlov, A. V., Duvigneau, J., Hyatt, T. C., Raju, R., Behling, T., et al. (2010) Effect of estrogen on mitochondrial function and intracellular stress markers in rat liver and kidney following trauma-hemorrhagic shock and prolonged hypotension, Mol. Med., 16, 254-261, https://doi.org/10.2119/molmed.2009.00184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nilsson, S., Mäkelä, S., Treuter, E., Tujague, M., Thomsen, J., et al. (2001) Mechanisms of estrogen action, Physiol. Rev., 81, 1535-1565, https://doi.org/10.1152/physrev.2001.81.4.1535.

    Article  CAS  PubMed  Google Scholar 

  132. Ostadal, B., Drahota, Z., Houstek, J., Milerova, M., Ostadalova, I., Hlavackova, M., and Kolar, F. (2019) Developmental and sex differences in cardiac tolerance to ischemia–reperfusion injury: the role of mitochondria, Can. J. Physiol. Pharmacol., 97, 808-814, https://doi.org/10.1139/cjpp-2019-0060.

    Article  CAS  PubMed  Google Scholar 

  133. Klinge, C. M. (2017) Estrogens regulate life and death in mitochondria, J. Bioenerg. Biomembr., 49, 307-324, https://doi.org/10.1007/s10863-017-9704-1.

    Article  CAS  PubMed  Google Scholar 

  134. Reiter, R. J., Mayo, J. C., Tan, D. X., Sainz, R. M., Alatorre-Jimenez, M., and Qin, L. (2016) Melatonin as an antioxidant: under promises but over delivers, J. Pineal Res., 61, 253-278, https://doi.org/10.1111/jpi.12360.

    Article  CAS  PubMed  Google Scholar 

  135. Reiter, R. J., Rosales-Corral, S., Tan, D. X., Jou, M. J., Galano, A., and Xu, B. (2017) Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas, Cell. Mol. Life Sci., 74, 3863-3881, https://doi.org/10.1007/s00018-017-2609-7.

    Article  CAS  PubMed  Google Scholar 

  136. Kurcer, Z., Oguz, E., Ozbilge, H., Baba, F., Aksoy, N., et al. (2007) Melatonin protects from ischemia/reperfusion-induced renal injury in rats: this effect is not mediated by proinflammatory cytokines, J. Pineal Res., 43, 172-178, https://doi.org/10.1111/j.1600-079X.2007.00459.x.

    Article  CAS  PubMed  Google Scholar 

  137. Aktoz, T., Aydogdu, N., Alagol, B., Yalcin, O., Huseyinova, G., and Atakan, I. H. (2007) The protective effects of melatonin and vitamin E against renal ischemia-reperfusion injury in rats, Ren. Fail., 29, 535-542, https://doi.org/10.1080/08860220701391738.

    Article  CAS  PubMed  Google Scholar 

  138. Panah, F., Ghorbanihaghjo, A., Argani, H., Haiaty, S., Rashtchizadeh, N., et al. (2019) The effect of oral melatonin on renal ischemia–reperfusion injury in transplant patients: a double-blind, randomized controlled trial, Transpl. Immunol., 57, 1-7, https://doi.org/10.1016/j.trim.2019.101241.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (project no. 18-15-00058, the study of oxidative stress, hormones, and immunosuppressors) and by the Russian Foundation for Basic Research (project no. 19-34-90023, the study of inflammation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Y. Plotnikov.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrianova, N.V., Zorov, D.B. & Plotnikov, E.Y. Targeting Inflammation and Oxidative Stress as a Therapy for Ischemic Kidney Injury. Biochemistry Moscow 85, 1591–1602 (2020). https://doi.org/10.1134/S0006297920120111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920120111

Keywords

Navigation