Skip to main content
Log in

Expansion of the “Sodium World” through Evolutionary Time and Taxonomic Space

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In 1986, Vladimir Skulachev and his colleagues coined the term “Sodium World” for the group of diverse organisms with sodium (Na)-based bioenergetics. Albeit only few such organisms had been discovered by that time, the authors insightfully noted that “the great taxonomic variety of organisms employing the Na-cycle points to the ubiquitous distribution of this novel type of membrane-linked energy transductions”. Here we used tools of bioinformatics to follow expansion of the Sodium World through the evolutionary time and taxonomic space. We searched for those membrane protein families in prokaryotic genomes that correlate with the use of the Na-potential for ATP synthesis by different organisms. In addition to the known Na-translocators, we found a plethora of uncharacterized protein families; most of them show no homology with studied proteins. In addition, we traced the presence of Na-based energetics in many novel archaeal and bacterial clades, which were recently identified by metagenomic techniques. The data obtained support the view that the Na-based energetics preceded the proton-dependent energetics in evolution and prevailed during the first two billion years of the Earth history before the oxygenation of atmosphere. Hence, the full capacity of Na-based energetics in prokaryotes remains largely unexplored. The Sodium World expanded owing to the acquisition of new functions by Na-translocating systems. Specifically, most classes of G-protein-coupled receptors (GPCRs), which are targeted by almost half of the known drugs, appear to evolve from the Na-translocating microbial rhodopsins. Thereby the GPCRs of class A, with 700 representatives in human genome, retained the Na-binding site in the center of the transmembrane heptahelical bundle together with the capacity of Na-translocation. Mathematical modeling showed that the class A GPCRs could use the energy of transmembrane Na-potential for increasing both their sensitivity and selectivity. Thus, GPCRs, the largest protein family coded by human genome, stem from the Sodium World, which encourages exploration of other Na-dependent enzymes of eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Table.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Abbreviations

COG:

Cluster of Orthologous Groups of proteins

GPCR:

G protein-coupled receptor

GTDB:

Genome Taxonomy Database

LUCA:

Last Universal Cellular Ancestor

MR:

microbial rhodopsin

NaR:

Na+-translocating rhodopsin

NQR:

Na+-translocating NADH:quinone oxidoreductase

pmf :

proton-motive force

PRC:

photochemical reaction center

RNF:

Na+-translocating ferredoxin:NAD(H) oxidoreductase

smf :

sodium-motive force

References

  1. Bakeeva, L. E., Chumakov, K. M., Drachev, A. L., Metlina, A. L., and Skulachev, V. P. (1986) The sodium cycle. III. Vibrio alginolyticus resembles Vibrio cholerae and some other vibriones by flagellar motor and ribosomal 5S-RNA structures, Biochim. Biophys. Acta, 850, 466-472.

    Article  CAS  Google Scholar 

  2. Skulachev, V. P., Sharaf, A. A., and Liberman, E. A. (1967) Proton conductors in the respiratory chain and artificial membranes, Nature, 216, 718-719, https://doi.org/10.1038/216718a0.

    Article  CAS  PubMed  Google Scholar 

  3. Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria, Nature, 222, 1076-1078, https://doi.org/10.1038/2221076a0.

    Article  CAS  PubMed  Google Scholar 

  4. Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., et al. (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature, 249, 321-324, https://doi.org/10.1038/249321a0.

    Article  CAS  PubMed  Google Scholar 

  5. Glagolev, A. N., and Skulachev, V. P. (1978) The proton pump is a molecular engine of motile bacteria, Nature, 272, 280-282, https://doi.org/10.1038/272280a0.

    Article  CAS  PubMed  Google Scholar 

  6. Skulachev, V. P. (1988) Membrane Bioenergetics, Springer-Verlag, Berlin.

  7. Cramer, W. A., and Knaff, D. B. (1990) Energy Transduction in Biological Membranes: A Textbook of Bioenergetics, Springer-Verlag, Berlin.

  8. Dimroth, P. (1980) A new sodium-transport system energized by the decarboxylation of oxaloacetate, FEBS Lett., 122, 234-236, https://doi.org/10.1016/0014-5793(80)80446-7.

    Article  CAS  PubMed  Google Scholar 

  9. Tokuda, H., and Unemoto, T. (1982) Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus, J. Biol. Chem., 257, 10007-10014.

    CAS  PubMed  Google Scholar 

  10. Glagolev, A. N., Dibrov, P. A., Skulachev, V. P., and Sherman, M. Y. (1984) A new type of energy transduction in biomembranes – Na+-dependent bacterial mobility, Biol. Membr., 1, 27-32.

    CAS  Google Scholar 

  11. Dibrov, P. A., Kostryko, V. A., Lazarova, R. L., Skulachev, V. P., and Smirnova, I. A. (1986) The sodium cycle. I. Na+-dependent motility and modes of membrane energization in the marine alkalotolerant vibrio Alginolyticus, Biochim Biophys Acta, 850, 449-457.

    Article  CAS  Google Scholar 

  12. Kinoshita, N., Unemoto, T., and Kobayashi, H. (1984) Sodium-stimulated ATPase in Streptococcus faecalis, J. Bacteriol., 158, 844-848, https://doi.org/10.1128/JB.158.3.844-848.1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Skulachev, V. P. (1984) Sodium bioenergetics, Trends Biochem. Sci., 9, 483-485, https://doi.org/10.1016/0968-0004(84)90317-7.

    Article  CAS  Google Scholar 

  14. Skulachev, V. P. (1985) Membrane-linked energy transductions. Bioenergetic functions of sodium: H+ is not unique as a coupling ion, Eur. J. Biochem., 151, 199-208.

    Article  CAS  Google Scholar 

  15. Dibrov, P. A., Lazarova, R. L., Skulachev, V. P., and Verkhovskaya, M. L. (1986) The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells, Biochim. Biophys. Acta, 850, 458-465.

    Article  CAS  Google Scholar 

  16. Mulkidjanian, A. Y., Makarova, K. S., Galperin, M. Y., and Koonin, E. V. (2007) Inventing the dynamo machine: the evolution of the F-type and V-type ATPases, Nat. Rev. Microbiol., 5, 892-899, https://doi.org/10.1038/nrmicro1767.

    Article  CAS  PubMed  Google Scholar 

  17. Mulkidjanian, A. Y., Galperin, M. Y., Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2008) Evolutionary primacy of sodium bioenergetics, Biol. Direct, 3, 13, https://doi.org/10.1186/1745-6150-3-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mulkidjanian, A. Y., Dibrov, P., and Galperin, M. Y. (2008) The past and present of sodium energetics: may the sodium-motive force be with you, Biochim. Biophys. Acta, 1777, 985-992.

    Article  CAS  Google Scholar 

  19. Mulkidjanian, A. Y., Galperin, M. Y., and Koonin, E. V. (2009) Co-evolution of primordial membranes and membrane proteins, Trends Biochem. Sci., 34, 206-215, https://doi.org/10.1016/j.tibs.2009.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dibrova, D. V., Galperin, M. Y., and Mulkidjanian, A. Y. (2010) Characterization of the N-ATPase, a distinct, laterally transferred Na+-translocating form of the bacterial F-type membrane ATPase, Bioinformatics, 26, 1473-1476, https://doi.org/10.1093/bioinformatics/btq234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mulkidjanian, A. Y., Bychkov, A. Y., Dibrova, D. V., Galperin, M. Y., and Koonin, E. V. (2012) Origin of first cells at terrestrial, anoxic geothermal fields, Proc. Natl. Acad. Sci. USA, 109, E821-830, https://doi.org/10.1073/pnas.1117774109.

    Article  PubMed  Google Scholar 

  22. Dibrova, D. V., Galperin, M. Y., Koonin, E. V., and Mulkidjanian, A. Y. (2015) Ancient systems of sodium/potassium homeostasis as predecessors of membrane bioenergetics, Biochemistry (Moscow), 80, 495-516, https://doi.org/10.1134/S0006297915050016.

    Article  CAS  Google Scholar 

  23. Konings, W. N. (2006) Microbial transport: adaptations to natural environments, Antonie Van Leeuwenhoek, 90, 325-342, https://doi.org/10.1007/s10482-006-9089-3.

    Article  CAS  PubMed  Google Scholar 

  24. Krulwich, T. A., Ito, M., Gilmour, R., Hicks, D. B., and Guffanti, A. A. (1998) Energetics of alkaliphilic Bacillus species: physiology and molecules, Adv. Microb. Physiol., 40, 401-438, https://doi.org/10.1016/s0065-2911(08)60136-8.

    Article  CAS  PubMed  Google Scholar 

  25. Hase, C. C., Fedorova, N. D., Galperin, M. Y., and Dibrov, P. A. (2001) Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons, Microbiol. Mol. Biol. Rev., 65, 353-370, https://doi.org/10.1128/MMBR.65.3.353-370.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boyer, P. D. (1997) The ATP synthase – a splendid molecular machine, Annu. Rev. Biochem., 66, 717-749, https://doi.org/10.1146/annurev.biochem.66.1.717.

    Article  CAS  PubMed  Google Scholar 

  27. Kuhlbrandt, W. (2019) Structure and mechanisms of F-type ATP synthases, Annu. Rev. Biochem., 88, 515-549, https://doi.org/10.1146/annurev-biochem-013118-110903.

    Article  CAS  PubMed  Google Scholar 

  28. Sobti, M., Walshe, J. L., Wu, D., Ishmukhametov, R., Zeng, Y. C., Robinson, C. V., Berry, R. M., and Stewart, A. G. (2020) Cryo-EM structures provide insight into how E. coli F1FO ATP synthase accommodates symmetry mismatch, Nat. Commun., 11, 2615, https://doi.org/10.1038/s41467-020-16387-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou, L., and Sazanov, L. A. (2019) Structure and conformational plasticity of the intact Thermus thermophilus V/A-type ATPase, Science, 365, https://doi.org/10.1126/science.aaw9144.

    Article  CAS  PubMed  Google Scholar 

  30. Meier, T., Polzer, P., Diederichs, K., Welte, W., and Dimroth, P. (2005) Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus, Science, 308, 659-662.

    Article  CAS  Google Scholar 

  31. Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G., and Walker, J. E. (2005) Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae, Science, 308, 654-659.

    Article  CAS  Google Scholar 

  32. Gogarten, J. P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E. J., et al. (1989) Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes, Proc. Natl. Acad. Sci. USA, 86, 6661-6665.

    Article  CAS  Google Scholar 

  33. Dimroth, P., and von Ballmoos, C. (2008) ATP synthesis by decarboxylation phosphorylation, Results Probl. Cell Differ., 45, 153-184, https://doi.org/10.1007/400_2007_045.

    Article  CAS  PubMed  Google Scholar 

  34. Deamer, D. W. (1987) Proton permeation of lipid bilayers, J. Bioenerg. Biomembr., 19, 457-479.

    CAS  PubMed  Google Scholar 

  35. Lolkema, J. S., Speelmans, G., and Konings, W. N. (1994) Na+-coupled versus H+-coupled energy transduction in bacteria, Biochim. Biophys. Acta, 1187, 211-215.

    Article  CAS  Google Scholar 

  36. Bozdaganyan, M. E., Lokhmatikov, A. V., Voskoboynikova, N., Cherepanov, D. A., Steinhoff, H. J., Shaitan, K. V., and Mulkidjanian, A. Y. (2019) Proton leakage across lipid bilayers: Oxygen atoms of phospholipid ester linkers align water molecules into transmembrane water wires, Biochim. Biophys. Acta Bioenerg., 1860, 439-451, https://doi.org/10.1016/j.bbabio.2019.03.001.

    Article  CAS  PubMed  Google Scholar 

  37. Haines, T. H. (2001) Do sterols reduce proton and sodium leaks through lipid bilayers? Prog. Lipid Res., 40, 299-324, https://doi.org/10.1016/s0163-7827(01)00009-1.

    Article  CAS  PubMed  Google Scholar 

  38. Dibrova, D. V., Chudetsky, M. Y., Galperin, M. Y., Koonin, E. V., and Mulkidjanian, A. Y. (2012) The role of energy in the emergence of biology from chemistry, Orig. Life Evol. Biosph., 42, 459-468, https://doi.org/10.1007/s11084-012-9308-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Corcelli, A. (2009) The cardiolipin analogues of Archaea, Biochim. Biophys. Acta, 1788, 2101-2106, https://doi.org/10.1016/j.bbamem.2009.05.010.

    Article  CAS  PubMed  Google Scholar 

  40. Chen, Q. P., and Li, Q. T. (2001) Effect of cardiolipin on proton permeability of phospholipid liposomes: the role of hydration at the lipid–water interface, Arch. Biochem. Biophys., 389, 201-206, https://doi.org/10.1006/abbi.2001.2319.

    Article  CAS  PubMed  Google Scholar 

  41. Koshkin, V., and Greenberg, M. L. (2002) Cardiolipin prevents rate-dependent uncoupling and provides osmotic stability in yeast mitochondria, Biochem. J., 364, 317-322, https://doi.org/10.1042/bj3640317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mulkidjanian, A. Y., Shalaeva, D. N., Lyamzaev, K. G., and Chernyak, B. V. (2018) Does oxidation of mitochondrial cardiolipin trigger a chain of antiapoptotic reactions? Biochemistry (Moscow), 83, 1263-1278, https://doi.org/10.1134/S0006297918100115.

    Article  CAS  Google Scholar 

  43. Pereto, J., Lopez-Garcia, P., and Moreira, D. (2004) Ancestral lipid biosynthesis and early membrane evolution, Trends Biochem. Sci., 29, 469-477.

    Article  CAS  Google Scholar 

  44. van Meer, G., Voelker, D. R., and Feigenson, G. W. (2008) Membrane lipids: where they are and how they behave, Nat. Rev. Mol. Cell Biol., 9, 112-124, https://doi.org/10.1038/nrm2330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, C., Ralko, A., Ren, Z., Rosenhouse-Dantsker, A., and Yang, X. (2019) Modes of cholesterol binding in membrane proteins: a joint analysis of 73 crystal structures, Adv. Exp. Med. Biol., 1135, 67-86, https://doi.org/10.1007/978-3-030-14265-0_4.

    Article  CAS  PubMed  Google Scholar 

  46. Williams, R. J. P., and Frausto da Silva, J. J. R. (2006) The Chemistry of Evolution: The Development of our Ecosystem, Elsevier, Amsterdam.

  47. Macallum, A. B. (1926) The paleochemistry of the body fluids and tissues, Physiol. Rev., 6, 316-357.

    Article  Google Scholar 

  48. Mulkidjanian, A. Y., Bychkov, A. Y., Dibrova, D. V., Galperin, M. Y., and Koonin, E. V. (2012) Open questions on the origin of life at anoxic geothermal fields, Orig. Life Evol. Biosph., 42, 507-516, https://doi.org/10.1007/s11084-012-9315-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maruyama, S., Ikoma, M., Genda, H., Hirose, K., Yokoyama, T., and Santosh, M. (2013) The naked planet Earth: most essential pre-requisite for the origin and evolution of life, Geosci. Front., 4, 141-165.

    Article  CAS  Google Scholar 

  50. Spirin, A. S., and Gavrilova, L. P. (1969) The Ribosome, Springer, New York.

  51. Natochin, Y. V. (2007) The physiological evolution of animals: sodium is the clue to resolving contradictions, Herald Russ. Acad. Sci., 77, 581-591.

    Article  Google Scholar 

  52. Koonin, E. V. (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor, Nat. Rev. Microbiol., 1, 127-136.

    Article  CAS  Google Scholar 

  53. Klein, D. J., Moore, P. B., and Steitz, T. A. (2004) The contribution of metal ions to the structural stability of the large ribosomal subunit, RNA, 10, 1366-1379, https://doi.org/10.1261/rna.7390804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rozov, A., Khusainov, I., El Omari, K., Duman, R., Mykhaylyk, V., et al. (2019) Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction, Nat. Commun., 10, 2519, https://doi.org/10.1038/s41467-019-10409-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shalaeva, D. N., Cherepanov, D. A., Galperin, M. Y., Golovin, A. V., and Mulkidjanian, A. Y. (2018) Evolution of cation binding in the active sites of P-loop nucleoside triphosphatases in relation to the basic catalytic mechanism, Elife, 7, https://doi.org/10.7554/eLife.37373.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Haumann, M., Mulkidjanian, A., and Junge, W. (1997) Electrogenicity of electron and proton transfer at the oxidizing side of photosystem II, Biochemistry, 36, 9304-9315, https://doi.org/10.1021/bi963114p.

    Article  CAS  PubMed  Google Scholar 

  57. Junge, W., Haumann, M., Ahlbrink, R., Mulkidjanian, A., and Clausen, J. (2002) Electrostatics and proton transfer in photosynthetic water oxidation, Philos. Trans. R Soc. Lond. B Biol. Sci., 357, 1407-1417; discussion 1417-1420, https://doi.org/10.1098/rstb.2002.1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mamedov, M., Govindjee, Nadtochenko, V., and Semenov, A. (2015) Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms, Photosynth. Res., 125, 51-63, https://doi.org/10.1007/s11120-015-0088-y.

    Article  CAS  PubMed  Google Scholar 

  59. Mulkidjanian, A. Y. (2010) Activated Q-cycle as a common mechanism for cytochrome bc1 and cytochrome b6f complexes, Biochim. Biophys. Acta, 1797, 1858-1868, https://doi.org/10.1016/j.bbabio.2010.07.008.

    Article  CAS  PubMed  Google Scholar 

  60. Otto, R., Sonnenberg, A. S., Veldkamp, H., and Konings, W. N. (1980) Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux, Proc. Natl. Acad. Sci. USA, 77, 5502-5506, https://doi.org/10.1073/pnas.77.9.5502.

    Article  CAS  PubMed  Google Scholar 

  61. Michel, T. A., and Macy, J. M. (1990) Generation of a membrane potential by sodium-dependent succinate efflux in Selenomonas ruminantium, J. Bacteriol., 172, 1430-1435, https://doi.org/10.1128/jb.172.3.1430-1435.1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dimroth, P. (1997) Primary sodium ion translocating enzymes, Biochim. Biophys. Acta, 1318, 11-51, https://doi.org/10.1016/s0005-2728(96)00127-2.

    Article  CAS  PubMed  Google Scholar 

  63. Buckel, W. (2001) Sodium ion-translocating decarboxylases, Biochim. Biophys. Acta, 1505, 15-27, https://doi.org/10.1016/s0005-2728(00)00273-5.

    Article  CAS  PubMed  Google Scholar 

  64. Verkhovsky, M. I., and Bogachev, A. V. (2010) Sodium-translocating NADH:quinone oxidoreductase as a redox-driven ion pump, Biochim. Biophys. Acta, 1797, 738-746, https://doi.org/10.1016/j.bbabio.2009.12.020.

    Article  CAS  PubMed  Google Scholar 

  65. Steuber, J., Vohl, G., Casutt, M. S., Vorburger, T., Diederichs, K., and Fritz, G. (2014) Structure of the V. cholerae Na+-pumping NADH:quinone oxidoreductase, Nature, 516, 62-67, https://doi.org/10.1038/nature14003.

    Article  CAS  PubMed  Google Scholar 

  66. Seedorf, H., Fricke, W. F., Veith, B., Bruggemann, H., Liesegang, H., et al. (2008) The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features, Proc. Natl. Acad. Sci. USA, 105, 2128-2133, https://doi.org/10.1073/pnas.0711093105.

    Article  PubMed  Google Scholar 

  67. Cherepanov, D. A., Mulkidjanian, A. Y., and Junge, W. (1999) Transient accumulation of elastic energy in proton translocating ATP synthase, FEBS Lett., 449, 1-6, https://doi.org/10.1016/S0014-5793(99)00386-5.

    Article  CAS  PubMed  Google Scholar 

  68. Boiteau, L., and Pascal, R. (2011) Energy sources, self-organization, and the origin of life, Orig. Life Evol. Biosph., 41, 23-33, https://doi.org/10.1007/s11084-010-9209-y.

    Article  CAS  PubMed  Google Scholar 

  69. Tatusov, R. L., Koonin, E. V., and Lipman, D. J. (1997) A genomic perspective on protein families, Science, 278, 631-637.

    Article  CAS  Google Scholar 

  70. Galperin, M. Y., Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database, Nucleic Acids Res., 43, D261-269, https://doi.org/10.1093/nar/gku1223.

    Article  CAS  PubMed  Google Scholar 

  71. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes, J. Mol. Biol., 305, 567-580, https://doi.org/10.1006/jmbi.2000.4315.

    Article  CAS  PubMed  Google Scholar 

  72. Dice, L. R. (1945) Measures of the amount of ecologic association between species, Ecology, 26, 297-302.

    Article  Google Scholar 

  73. Deppenmeier, U. (2002) The unique biochemistry of methanogenesis, Prog. Nucleic Acid Res. Mol. Biol., 71, 223-283, https://doi.org/10.1016/s0079-6603(02)71045-3.

    Article  CAS  PubMed  Google Scholar 

  74. Kellosalo, J., Kajander, T., Kogan, K., Pokharel, K., and Goldman, A. (2012) The structure and catalytic cycle of a sodium-pumping pyrophosphatase, Science, 337, 473-476, https://doi.org/10.1126/science.1222505.

    Article  CAS  PubMed  Google Scholar 

  75. Baykov, A. A., Malinen, A. M., Luoto, H. H., and Lahti, R. (2013) Pyrophosphate-fueled Na+ and H+ transport in prokaryotes, Microbiol. Mol. Biol. Rev., 77, 267-276, https://doi.org/10.1128/MMBR.00003-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fiedorczuk, K., Letts, J. A., Degliesposti, G., Kaszuba, K., Skehel, M., and Sazanov, L. A. (2016) Atomic structure of the entire mammalian mitochondrial complex I, Nature, 538, 406-410, https://doi.org/10.1038/nature19794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Friedrich, T., and Weiss, H. (1997) Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules, J. Theor. Biol., 187, 529-540, https://doi.org/10.1006/jtbi.1996.0387.

    Article  CAS  PubMed  Google Scholar 

  78. Hedderich, R. (2004) Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I, J. Bioenerg. Biomembr., 36, 65-75, https://doi.org/10.1023/b:jobb.0000019599.43969.33.

    Article  CAS  PubMed  Google Scholar 

  79. Moparthi, V. K., and Hagerhall, C. (2011) The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 protein subunits, J. Mol. Evol., 72, 484-497, https://doi.org/10.1007/s00239-011-9447-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schut, G. J., Boyd, E. S., Peters, J. W., and Adams, M. W. (2013) The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications, FEMS Microbiol. Rev., 37, 182-203, https://doi.org/10.1111/j.1574-6976.2012.00346.x.

    Article  CAS  PubMed  Google Scholar 

  81. Marreiros, B. C., Batista, A. P., Duarte, A. M., and Pereira, M. M. (2013) A missing link between complex I and group 4 membrane-bound [NiFe] hydrogenases, Biochim. Biophys. Acta, 1827, 198-209, https://doi.org/10.1016/j.bbabio.2012.09.012.

    Article  CAS  PubMed  Google Scholar 

  82. Novakovsky, G. E., Dibrova, D. V., and Mulkidjanian, A. Y. (2016) Phylogenomic analysis of type 1 NADH:quinone oxidoreductase, Biochemistry (Moscow), 81, 770-784, https://doi.org/10.1134/S0006297916070142.

    Article  CAS  Google Scholar 

  83. Yu, H., Wu, C. H., Schut, G. J., Haja, D. K., Zhao, G., et al. (2018) Structure of an ancient respiratory system, Cell, 173, 1636-1649.e16, https://doi.org/10.1016/j.cell.2018.03.071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Swartz, T. H., Ikewada, S., Ishikawa, O., Ito, M., and Krulwich, T. A. (2005) The Mrp system: a giant among monovalent cation/proton antiporters? Extremophiles, 9, 345-354, https://doi.org/10.1007/s00792-005-0451-6.

    Article  CAS  PubMed  Google Scholar 

  85. Ito, M., Morino, M., and Krulwich, T. A. (2017) Mrp antiporters have important roles in diverse bacteria and archaea, Front. Microbiol., 8, 2325, https://doi.org/10.3389/fmicb.2017.02325.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Moparthi, V. K., Kumar, B., Mathiesen, C., and Hagerhall, C. (2011) Homologous protein subunits from Escherichia coli NADH:quinone oxidoreductase can functionally replace MrpA and MrpD in Bacillus subtilis, Biochim. Biophys. Acta, 1807, 427-436, https://doi.org/10.1016/j.bbabio.2011.01.005.

    Article  CAS  PubMed  Google Scholar 

  87. Steiner, J., and Sazanov, L. (2020) Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter, Elife, 9, https://doi.org/10.7554/eLife.59407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tersteegen, A., and Hedderich, R. (1999) Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins, Eur. J. Biochem., 264, 930-943, https://doi.org/10.1046/j.1432-1327.1999.00692.x.

    Article  CAS  PubMed  Google Scholar 

  89. Thauer, R. K. (2012) The Wolfe cycle comes full circle, Proc. Natl. Acad. Sci. USA, 109, 15084-15085, https://doi.org/10.1073/pnas.1213193109.

    Article  CAS  PubMed  Google Scholar 

  90. Dibrova, D. V., Konovalov, K. A., Perekhvatov, V. V., Skulachev, K. V., and Mulkidjanian, A. Y. (2017) COGcollator: a web server for analysis of distant relationships between homologous protein families, Biol. Direct, 12, 29, https://doi.org/10.1186/s13062-017-0198-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N. N., Anderson, I. J., et al. (2013) Insights into the phylogeny and coding potential of microbial dark matter, Nature, 499, 431-437, https://doi.org/10.1038/nature12352.

    Article  CAS  PubMed  Google Scholar 

  92. Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., et al. (2016) A new view of the tree of life, Nat. Microbiol., 1, 16048, https://doi.org/10.1038/nmicrobiol.2016.48.

    Article  CAS  PubMed  Google Scholar 

  93. Castelle, C. J., and Banfield, J. F. (2018) Major new microbial groups expand diversity and alter our understanding of the tree of life, Cell, 172, 1181-1197, https://doi.org/10.1016/j.cell.2018.02.016.

    Article  CAS  PubMed  Google Scholar 

  94. Parks, D. H., Chuvochina, M., Waite, D. W., Rinke, C., Skarshewski, A., Chaumeil, P. A., and Hugenholtz, P. (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life, Nat. Biotechnol., 36, 996-1004, https://doi.org/10.1038/nbt.4229.

    Article  CAS  PubMed  Google Scholar 

  95. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W. (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res., 25, 1043-1055, https://doi.org/10.1101/gr.186072.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Potter, S. C., Luciani, A., Eddy, S. R., Park, Y., Lopez, R., and Finn, R. D. (2018) HMMER web server: 2018 update, Nucleic Acids Res., 46, W200-W204, https://doi.org/10.1093/nar/gky448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Castelle, C. J., Brown, C. T., Anantharaman, K., Probst, A. J., Huang, R. H., and Banfield, J. F. (2018) Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations, Nat. Rev. Microbiol., 16, 629-645, https://doi.org/10.1038/s41579-018-0076-2.

    Article  CAS  PubMed  Google Scholar 

  98. Beam, J. B., and Becraft, E. D. (2020) Ancestral absence of electron transport chains in Patescibacteria and DPANN, Front. Microbiol., https://doi.org/10.3389/fmicb.2020.01848.

  99. Brown, I. I., Fadeyev, S. I., Kirik, I. I., Severina, I. I, and Skulachev, V. P. (1990) Light-dependent ΔµNa+-generation and utilization in the marine cyanobacterium Oscillatoria brevis, FEBS Lett., 270, 203-206.

    Article  CAS  Google Scholar 

  100. Mulkidjanian, A. Y., Koonin, E. V., Makarova, K. S., Mekhedov, S. L., Sorokin, A., et al. (2006) The cyanobacterial genome core and the origin of photosynthesis, Proc. Natl. Acad. Sci. USA, 103, 13126-13131, https://doi.org/10.1073/pnas.0605709103.

    Article  CAS  PubMed  Google Scholar 

  101. Hohmann-Marriott, M. F., and Blankenship, R. E. (2011) Evolution of photosynthesis, Annu. Rev. Plant Biol., 62, 515-548, https://doi.org/10.1146/annurev-arplant-042110-103811.

    Article  CAS  PubMed  Google Scholar 

  102. Junge, W., Renger, G., and Auslander, W. (1977) Proton release into the internal phase of thylakoids due to photosynthetic water oxidation. On the periodicity under flashing light, FEBS Lett., 79, 155-159, https://doi.org/10.1016/0014-5793(77)80373-6.

    Article  CAS  PubMed  Google Scholar 

  103. Gopta, O. A., Cherepanov, D. A., Junge, W., and Mulkidjanian, A. Y. (1999) Proton transfer from the bulk to the bound ubiquinone QB of the reaction center in chromatophores of Rhodobacter sphaeroides: retarded conveyance by neutral water, Proc. Natl. Acad. Sci. USA, 96, 13159-13164.

    Article  CAS  Google Scholar 

  104. Mamedov, M. D., Tyunyatkina, A. A., Siletsky, S. A., and Semenov, A. Y. (2006) Voltage changes involving photosystem II quinone-iron complex turnover, Eur. Biophys. J., 35, 647-654, https://doi.org/10.1007/s00249-006-0069-3.

    Article  CAS  PubMed  Google Scholar 

  105. Dibrova, D. V., Shalaeva, D. N., Galperin, M. Y., and Mulkidjanian, A. Y. (2017) Emergence of cytochrome bc complexes in the context of photosynthesis, Physiol. Plant., 161, 150-170, https://doi.org/10.1111/ppl.12586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mitchell, P. (1976) Possible molecular mechanisms of the protonmotive function of cytochrome systems, J. Theor. Biol., 62, 327-367, https://doi.org/10.1016/0022-5193(76)90124-7.

    Article  CAS  PubMed  Google Scholar 

  107. Bertsova, Y. V., Mamedov, M. D., and Bogachev, A. V. (2019) Na+-translocating ferredoxin:NAD+ oxidoreductase is a component of photosynthetic electron transport chain in green sulfur bacteria, Biochemistry (Moscow), 84, 1403-1410, https://doi.org/10.1134/S0006297919110142.

    Article  CAS  Google Scholar 

  108. Soontharapirakkul, K., Promden, W., Yamada, N., Kageyama, H., Incharoensakdi, A., Iwamoto-Kihara, A., and Takabe, T. (2011) Halotolerant cyanobacterium Aphanothece halophytica contains an Na+-dependent F1FO-ATP synthase with a potential role in salt-stress tolerance, J. Biol. Chem., 286, 10169-10176, https://doi.org/10.1074/jbc.M110.208892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schulz, S., Wilkes, M., Mills, D. J., Kuhlbrandt, W., and Meier, T. (2017) Molecular architecture of the N-type ATPase rotor ring from Burkholderia pseudomallei, EMBO Rep., 18, 526-535, https://doi.org/10.15252/embr.201643374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Soo, R. M., Hemp, J., Parks, D. H., Fischer, W. W., and Hugenholtz, P. (2017) On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria, Science, 355, 1436-1440, https://doi.org/10.1126/science.aal3794.

    Article  CAS  PubMed  Google Scholar 

  111. Hyatt, D., Chen, G. L., Locascio, P. F., Land, M. L., Larimer, F. W., and Hauser, L. J. (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification, BMC Bioinformatics, 11, 119, https://doi.org/10.1186/1471-2105-11-119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fritz, M., Klyszejko, A. L., Morgner, N., Vonck, J., Brutschy, B., Muller, D. J., Meier, T., and Muller, V. (2008) An intermediate step in the evolution of ATPases: a hybrid FO-VO rotor in a bacterial Na+ F1FO ATP synthase, FEBS J., 275, 1999-2007, https://doi.org/10.1111/j.1742-4658.2008.06354.x.

    Article  CAS  PubMed  Google Scholar 

  113. Schlegel, K., and Müller, V. (2013) Evolution of Na+ and H+ bioenergetics in methanogenic archaea, Biochem. Soc. Trans., 41, 421-426, https://doi.org/10.1042/BST20120294.

    Article  CAS  PubMed  Google Scholar 

  114. Skulachev, V. P. (1978) Membrane-linked energy buffering as the biological function of Na+/K+ gradient, FEBS Lett., 87, 171-179, https://doi.org/10.1016/0014-5793(78)80326-3.

    Article  CAS  PubMed  Google Scholar 

  115. Arshavsky, V. Y., Baryshev, V. A., Brown, I. I., Glagolev, A. N., and Skulachev, V. P. (1981) Transmembrane gradient of K+ and Na+ ions as an energy buffer in Halobacterium halobium cells, FEBS Lett., 133, 22-26.

    Article  Google Scholar 

  116. Brown, I. I, Galperin, M., Glagolev, A. N., and Skulachev, V. P. (1983) Utilization of energy stored in the form of Na+ and K+ ion gradients by bacterial cells, Eur. J. Biochem., 134, 345-349.

    Article  CAS  Google Scholar 

  117. Welkie, D. G., Rubin, B. E., Diamond, S., Hood, R. D., Savage, D. F., and Golden, S. S. (2019) A hard day’s night: cyanobacteria in diel cycles, Trends Microbiol., 27, 231-242, https://doi.org/10.1016/j.tim.2018.11.002.

    Article  CAS  PubMed  Google Scholar 

  118. Oesterhelt, D., and Stoeckenius, W. (1973) Functions of a new photoreceptor membrane, Proc. Natl. Acad. Sci. USA, 70, 2853-2857.

    Article  CAS  Google Scholar 

  119. Lozier, R. H., Bogomolni, R. A., and Stoeckenius, W. (1975) Bacteriorhodopsin: a light-driven proton pump in Halobacterium halobium, Biophys. J., 15, 955-962, https://doi.org/10.1016/S0006-3495(75)85875-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Heberle, J., Fitter, J., Sass, H. J., and Buldt, G. (2000) Bacteriorhodopsin: the functional details of a molecular machine are being resolved, Biophys. Chem., 85, 229-248.

    Article  CAS  Google Scholar 

  121. Inoue, K., Ono, H., Abe-Yoshizumi, R., Yoshizawa, S., Ito, H., Kogure, K., and Kandori, H. (2013) A light-driven sodium ion pump in marine bacteria, Nat. Commun., 4, 1678, https://doi.org/10.1038/ncomms2689.

    Article  CAS  PubMed  Google Scholar 

  122. Brown, L. S. (2014) Eubacterial rhodopsins – unique photosensors and diverse ion pumps, Biochim. Biophys. Acta, 1837, 553-561, https://doi.org/10.1016/j.bbabio.2013.05.006.

    Article  CAS  PubMed  Google Scholar 

  123. Sorokin, D. Y., Muntyan, M. S., Toshchakov, S. V., Korzhenkov, A., and Kublanov, I. V. (2018) Phenotypic and genomic properties of a novel deep-lineage haloalkaliphilic member of the phylum balneolaeota from soda lakes possessing Na+-translocating proteorhodopsin, Front. Microbiol., 9, 2672, https://doi.org/10.3389/fmicb.2018.02672.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gushchin, I., Shevchenko, V., Polovinkin, V., Kovalev, K., Alekseev, A., et al. (2015) Crystal structure of a light-driven sodium pump, Nat. Struct. Mol. Biol., 22, 390-395, https://doi.org/10.1038/nsmb.3002.

    Article  CAS  PubMed  Google Scholar 

  125. Kato, H. E., Inoue, K., Abe-Yoshizumi, R., Kato, Y., Ono, H., et al. (2015) Structural basis for Na+ transport mechanism by a light-driven Na+ pump, Nature, 521, 48-53, https://doi.org/10.1038/nature14322.

    Article  CAS  PubMed  Google Scholar 

  126. Kovalev, K., Astashkin, R., Gushchin, I., Orekhov, P., Volkov, D., et al. (2020) Molecular mechanism of light-driven sodium pumping, Nat. Commun., 11, 2137, https://doi.org/10.1038/s41467-020-16032-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bogachev, A. V., Bertsova, Y. V., Verkhovskaya, M. L., Mamedov, M. D., and Skulachev, V. P. (2016) Real-time kinetics of electrogenic Na+ transport by rhodopsin from the marine flavobacterium Dokdonia sp. PRO95, Sci. Rep., 6, 21397, https://doi.org/10.1038/srep21397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pinhassi, J., DeLong, E. F., Beja, O., Gonzalez, J. M., and Pedros-Alio, C. (2016) Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology, Microbiol. Mol. Biol. Rev., 80, 929-954, https://doi.org/10.1128/MMBR.00003-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Knudsen, J. L., Kluge, A., Bochenkova, A. V., Kiefer, H. V., and Andersen, L. H. (2018) The UV-visible action-absorption spectrum of all-trans and 11-cis protonated Schiff base retinal in the gas phase, Phys. Chem. Chem. Phys., 20, 7190-7194, https://doi.org/10.1039/c7cp07512j.

    Article  CAS  PubMed  Google Scholar 

  130. DasSarma, S., and Schwieterman, E. W. (2018) Early evolution of purple retinal pigments on Earth and implications for exoplanet biosignatures, Int. J. Astrobiol., 1-10, https://doi.org/10.1017/S1473550418000423.

  131. Ovchinnikov, Y. A. (1982) Rhodopsin and bacteriorhodopsin: structure-function relationships, FEBS Lett., 148, 179-191.

    Article  CAS  Google Scholar 

  132. Ernst, O. P., Lodowski, D. T., Elstner, M., Hegemann, P., Brown, L. S., and Kandori, H. (2014) Microbial and animal rhodopsins: structures, functions, and molecular mechanisms, Chem. Rev., 114, 126-163, https://doi.org/10.1021/cr4003769.

    Article  CAS  PubMed  Google Scholar 

  133. Soppa, J. (1994) Two hypotheses – one answer. Sequence comparison does not support an evolutionary link between halobacterial retinal proteins including bacteriorhodopsin and eukaryotic G-protein-coupled receptors, FEBS Lett., 342, 7-11.

    Article  CAS  Google Scholar 

  134. Kouyama, T., and Murakami, M. (2010) Structural divergence and functional versatility of the rhodopsin superfamily, Photochem. Photobiol. Sci., 9, 1458-1465, https://doi.org/10.1039/c0pp00236d.

    Article  CAS  PubMed  Google Scholar 

  135. Devine, E. L., Oprian, D. D., and Theobald, D. L. (2013) Relocating the active-site lysine in rhodopsin and implications for evolution of retinylidene proteins, Proc. Natl. Acad. Sci. USA, 110, 13351-13355, https://doi.org/10.1073/pnas.1306826110.

    Article  PubMed  Google Scholar 

  136. Katritch, V., Cherezov, V., and Stevens, R. C. (2013) Structure–function of the G protein-coupled receptor superfamily, Annu. Rev. Pharmacol. Toxicol., 53, 531-556, https://doi.org/10.1146/annurev-pharmtox-032112-135923.

    Article  CAS  PubMed  Google Scholar 

  137. Liu, W., Chun, E., Thompson, A. A., Chubukov, P., Xu, F., et al. (2012) Structural basis for allosteric regulation of GPCRs by sodium ions, Science, 337, 232-236, https://doi.org/10.1126/science.1219218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fenalti, G., Giguere, P. M., Katritch, V., Huang, X. P., Thompson, A. A., Cherezov, V., Roth, B. L., and Stevens, R. C. (2014) Molecular control of delta-opioid receptor signalling, Nature, 506, 191-196, https://doi.org/10.1038/nature12944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Miller-Gallacher, J. L., Nehme, R., Warne, T., Edwards, P. C., Schertler, G. F., Leslie, A. G., and Tate, C. G. (2014) The 2.1 Å resolution structure of cyanopindolol-bound beta1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor, PLoS One, 9, e92727, https://doi.org/10.1371/journal.pone.0092727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Katritch, V., Fenalti, G., Abola, E. E., Roth, B. L., Cherezov, V., and Stevens, R. C. (2014) Allosteric sodium in class A GPCR signaling, Trends Biochem. Sci., 39, 233-244, https://doi.org/10.1016/j.tibs.2014.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Massink, A., Gutierrez-de-Teran, H., Lenselink, E. B., Ortiz Zacarias, N. V., Xia, L., et al. (2015) Sodium ion binding pocket mutations and adenosine A2A receptor function, Mol. Pharmacol., 87, 305-313, https://doi.org/10.1124/mol.114.095737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. White, K. L., Eddy, M. T., Gao, Z. G., Han, G. W., Lian, T., et al. (2018) Structural connection between activation microswitch and allosteric sodium site in GPCR signaling, Structure, 26, 259-269.e5, https://doi.org/10.1016/j.str.2017.12.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shalaeva, D. N., Galperin, M. Y., and Mulkidjanian, A. Y. (2015) Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodium-translocating rhodopsins, Biol. Direct, 10, 63, https://doi.org/10.1186/s13062-015-0091-4.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Radzwill, N., Gerwert, K., and Steinhoff, H. J. (2001) Time-resolved detection of transient movement of helices F and G in doubly spin-labeled bacteriorhodopsin, Biophys. J., 80, 2856-2866, https://doi.org/10.1016/S0006-3495(01)76252-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nakanishi, T., Kanada, S., Murakami, M., Ihara, K., and Kouyama, T. (2013) Large deformation of helix F during the photoreaction cycle of Pharaonis halorhodopsin in complex with azide, Biophys. J., 104, 377-385, https://doi.org/10.1016/j.bpj.2012.12.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sattig, T., Rickert, C., Bamberg, E., Steinhoff, H. J., and Bamann, C. (2013) Light-induced movement of the transmembrane helix B in channelrhodopsin-2, Angew. Chem. Int. Ed. Engl., 52, 9705-9708, https://doi.org/10.1002/anie.201301698.

    Article  CAS  PubMed  Google Scholar 

  147. Krause, N., Engelhard, C., Heberle, J., Schlesinger, R., and Bittl, R. (2013) Structural differences between the closed and open states of channelrhodopsin-2 as observed by EPR spectroscopy, FEBS Lett., 587, 3309-3313, https://doi.org/10.1016/j.febslet.2013.08.043.

    Article  CAS  PubMed  Google Scholar 

  148. Klare, J. P., Bordignon, E., Engelhard, M., and Steinhoff, H. J. (2004) Sensory rhodopsin II and bacteriorhodopsin: light activated helix F movement, Photochem. Photobiol. Sci., 3, 543-547, https://doi.org/10.1039/b402656j.

    Article  CAS  PubMed  Google Scholar 

  149. Yuan, S., Hu, Z., Filipek, S., and Vogel, H. (2015) W246(6.48) opens a gate for a continuous intrinsic water pathway during activation of the adenosine A2A receptor, Angew. Chem. Int. Ed. Engl., 54, 556-559, https://doi.org/10.1002/anie.201409679.

    Article  CAS  PubMed  Google Scholar 

  150. Manglik, A., Kim, T. H., Masureel, M., Altenbach, C., Yang, Z., et al. (2015) Structural insights into the dynamic process of β2-adrenergic receptor signaling, Cell, 161, 1101-1111, https://doi.org/10.1016/j.cell.2015.04.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Scheerer, P., Park, J. H., Hildebrand, P. W., Kim, Y. J., Krauss, N., Choe, H. W., Hofmann, K. P., and Ernst, O. P. (2008) Crystal structure of opsin in its G-protein-interacting conformation, Nature, 455, 497-502, https://doi.org/10.1038/nature07330.

    Article  CAS  PubMed  Google Scholar 

  152. Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W., and Ernst, O. P. (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin, Nature, 454, 183-187, https://doi.org/10.1038/nature07063.

    Article  CAS  PubMed  Google Scholar 

  153. Zhang, C., Srinivasan, Y., Arlow, D. H., Fung, J. J., Palmer, D., et al. (2012) High-resolution crystal structure of human protease-activated receptor 1, Nature, 492, 387-392, https://doi.org/10.1038/nature11701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yuan, S., Vogel, H., and Filipek, S. (2013) The role of water and sodium ions in the activation of the mu-opioid receptor, Angew. Chem. Int. Ed. Engl., 52, 10112-10115, https://doi.org/10.1002/anie.201302244.

    Article  CAS  PubMed  Google Scholar 

  155. Yuan, S., Filipek, S., Palczewski, K., and Vogel, H. (2014) Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway, Nat. Commun., 5, 4733, https://doi.org/10.1038/ncomms5733.

    Article  CAS  PubMed  Google Scholar 

  156. Vickery, O. N., Carvalheda, C. A., Zaidi, S. A., Pisliakov, A. V., Katritch, V., and Zachariae, U. (2018) Intracellular transfer of Na+ in an active-state G-protein-coupled receptor, Structure, 26, 171-180.e2, https://doi.org/10.1016/j.str.2017.11.013.

    Article  CAS  PubMed  Google Scholar 

  157. Hu, X., Wang, Y., Hunkele, A., Provasi, D., Pasternak, G. W., and Filizola, M. (2019) Kinetic and thermodynamic insights into sodium ion translocation through the mu-opioid receptor from molecular dynamics and machine learning analysis, PLoS Comput. Biol., 15, e1006689, https://doi.org/10.1371/journal.pcbi.1006689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shalaeva, D. N., Cherepanov, D. A., Galperin, M. Y., Vriend, G., and Mulkidjanian, A. Y. (2019) G protein-coupled receptors of class A harness the energy of membrane potential to increase their sensitivity and selectivity, Biochim. Biophys. Acta Biomembr., 1861, 183051, https://doi.org/10.1016/j.bbamem.2019.183051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Laubinger, W., and Dimroth, P. (1987) Characterization of the Na+-stimulated ATPase of Propionigenium modestum as an enzyme of the F1FO type, Eur. J. Biochem., 168, 475-480.

    Article  CAS  Google Scholar 

  160. McMillan, D. G. G., Ferguson, S. A., Dey, D., Schröder, K., Aung, H. L., et al. (2011) A1AO-ATP synthase of Methanobrevibacter ruminantium couples sodium ions for ATP synthesis under physiological conditions, J. Biol. Chem., 286, 39882-39892.

    Article  CAS  Google Scholar 

  161. Palmgren, M. G., and Nissen, P. (2011) P-type ATPases, Annu. Rev. Biophys., 40, 243-266, https://doi.org/10.1146/annurev.biophys.093008.131331.

    Article  CAS  PubMed  Google Scholar 

  162. Skou, J. C. (1998) The identification of the sodium-potassium pump (Nobel Lecture), Angew. Chem. Int. Ed. Engl., 37, 2320-2328, https://doi.org/10.1002/(SICI)1521-3773(19980918)37%3A17%3C2320%3A%3AAID-ANIE2320%3E3.0.CO%3B2-2.

    Article  CAS  PubMed  Google Scholar 

  163. Skulachev, V. P. (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants, Q. Rev. Biophys., 29, 169-202, https://doi.org/10.1017/s0033583500005795.

    Article  CAS  PubMed  Google Scholar 

  164. Macallum, A. B. (1903) On the inorganic composition of the Medusae, Aurelia flavidula and Cyanea arctica, J. Physiol., 29, 213-241, https://doi.org/10.1113/jphysiol.1903.sp000952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Dibrov, P., Dibrov, E., Maddaford, T. G., Kenneth, M., Nelson, J., Resch, C., and Pierce, G. N. (2017) Development of a novel rationally designed antibiotic to inhibit a nontraditional bacterial target, Can. J. Physiol. Pharmacol., 95, 595-603, https://doi.org/10.1139/cjpp-2016-0505.

    Article  CAS  PubMed  Google Scholar 

  166. Dibrov, P., Dibrov, E., and Pierce, G. N. (2017) Na+-NQR (Na+-translocating NADH:ubiquinone oxidoreductase) as a novel target for antibiotics, FEMS Microbiol. Rev., 41, 653-671, https://doi.org/10.1093/femsre/fux032.

    Article  CAS  PubMed  Google Scholar 

  167. Crooks, G. E., Hon, G., Chandonia, J. M., and Brenner, S. E. (2004) WebLogo: a sequence logo generator, Genome Res., 14, 1188-1190, https://doi.org/10.1101/gr.849004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Abbas, Y. M., Wu, D., Bueler, S. A., Robinson, C. V., and Rubinstein, J. L. (2020) Structure of V-ATPase from the mammalian brain, Science, 367, 1240-1246, https://doi.org/10.1126/science.aaz2924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are particularly thankful to Vladimir Skulachev for his long-lasting interest in our work. We gratefully acknowledge helpful discussions with Drs. Alexander V. Bogachev, Pavel Dibrov, Michael Y. Galperin, Johann Klare, Eugene V. Koonin, Kira S. Makarova, Heinz-Juergen Steinhoff, Natalia Voskoboynikova, and Yuri V. Wolf.

Funding

This work was financially supported by the Deutsche Forschungsgemeinschaft, the German Academic Exchange Service (DAAD), the EvoCell Program of the Osnabrueck University, the Development Program of the Lomonosov Moscow State University (supercomputers “Chebyshev” and “Lomonosov”), and by the Russian Science Foundation (project no. 17-14-01314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Mulkidjanian.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

We dedicate this paper to Professor Vladimir P. Skulachev on the occasion of his 85th birthday and in appreciation of his discovery of the Sodium World.

Supplementary file 1

10541_2020_2100_MOESM1_ESM.pdf

BLAST search results; proteolipid sequence of the N-ATPase of Synechococcus sp. PCC 73109 was used as a query against all cyanobacterial sequences. The first 64 hits represent proteolipid subunits of typical N-ATPases. 53 of them have whole sets of Na+ ligands.

Supplementary file 2

10541_2020_2100_MOESM2_ESM.xlsx

Proteolipid subunits in genomes of novel cyanobacteria-related lineages Sericytochromatia, Melainabacteria, Saganbacteria, and Margulisbacteria.

Supplementary file 3

10541_2020_2100_MOESM3_ESM.pdf

BLAST search results; proteolipid sequence of the N-ATPase of Synechococcus sp. PCC 73109 was used as a query against all Oscillatoriales sequences. The first 14 hits represent typical N-ATPases. 11 of them have whole sets of Na+ ligands.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlova, M.I., Bushmakin, I.M., Belyaeva, J.D. et al. Expansion of the “Sodium World” through Evolutionary Time and Taxonomic Space. Biochemistry Moscow 85, 1518–1542 (2020). https://doi.org/10.1134/S0006297920120056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920120056

Keywords

Navigation