Skip to main content
Log in

Nobiletin: Targeting the Circadian Network to Promote Bioenergetics and Healthy Aging

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The circadian clock is the biological mastermind governing orderly execution of bodily processes throughout the day. In recent years, an emerging topic of broad interest is clock-modulatory agents, including small molecules both of synthetic and natural origins, and their potential applications in disease models. Nobiletin is a naturally occurring flavonoid with the greatest abundance found in citrus peels. Extensive research has shown that Nobiletin is endowed with a wide range of biological activities, yet its mechanism of action remains unclear. We recently found through unbiased chemical screening that Nobiletin impinges on the clock machinery to activate temporal control of downstream processes within the cell and throughout the body. Using animal models of diseases and aging, we and others illustrate potent beneficial effects of Nobiletin on cellular energetics in both periphery and brain to promote healthy aging. Given its excellent safety profile, Nobiletin may represent a promising candidate molecule for development of nutraceutical and chronotherapeutic agents against chronic and age-related neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s Disease

CI:

Complex I

CIII:

Complex III

CIV:

Complex IV

CL:

cardiolipin

SC:

supercomplex

NOB:

Nobiletin

TRF:

time-restricted feeding

References

  1. Ben-Aziz, A. (1967) Nobiletin is main fungistat in tangerines resistant to mal secco, Science, 155, 1026-1027, https://doi.org/10.1126/science.155.3765.1026.

    Article  CAS  PubMed  Google Scholar 

  2. Walle, T. (2007) Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass? Semin. Cancer Biol., 17, 354-362, https://doi.org/10.1016/j.semcancer.2007.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mulvihill, E. E., Burke, A. C., and Huff, M. W. (2016) Citrus flavonoids as regulators of lipoprotein metabolism and atherosclerosis, Annu. Rev. Nutr., 36, 275-299, https://doi.org/10.1146/annurev-nutr-071715-050718.

    Article  CAS  PubMed  Google Scholar 

  4. Huang, H., Li, L., Shi, W., Liu, H., Yang, J., Yuan, X., and Wu, L. (2016) The multifunctional effects of nobiletin and its metabolites in vivo and in vitro, Evid. Based Complement. Alternat. Med., 2016, 2918796, https://doi.org/10.1155/2016/2918796.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Evans, M., Sharma, P., and Guthrie, N. (2012) Bioavailability of Citrus Polymethoxylated Flavones and Their Biological Role in Metabolic Syndrome and Hyperlipidemia, InTech, pp. 1-19.

  6. Zhang, H., Cui, J., Tian, G., DiMarco-Crook, C., Gao, W., et al. (2019) Efficiency of four different dietary preparation methods in extracting functional compounds from dried tangerine peel, Food Chem., 289, 340-350, https://doi.org/10.1016/j.foodchem.2019.03.063.

    Article  CAS  PubMed  Google Scholar 

  7. Gloston, G. F., Yoo, S. H., and Chen, Z. J. (2017) Clock-enhancing small molecules and potential applications in chronic diseases and aging, Front. Neurol., 8, 100, https://doi.org/10.3389/fneur.2017.00100.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bell-Pedersen, D., Cassone, V. M., Earnest, D. J., Golden, S. S., Hardin, P. E., Thomas, T. L., and Zoran, M. J. (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms, Nat. Rev. Genet., 6, 544-556, https://doi.org/10.1038/nrg1633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takahashi, J. S. (2017) Transcriptional architecture of the mammalian circadian clock, Nat. Rev. Genet., 18, 164-179, https://doi.org/10.1038/nrg.2016.150.

    Article  CAS  PubMed  Google Scholar 

  10. Green, C. B., Takahashi, J. S., and Bass, J. (2008) The meter of metabolism, Cell, 134, 728-742, https://doi.org/10.1016/j.cell.2008.08.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, E. E., and Kay, S. A. (2010) Clocks not winding down: unravelling circadian networks, Nat. Rev. Mol. Cell Biol., 11, 764-776, https://doi.org/10.1038/nrm2995.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E., and Hogenesch, J. B. (2014) A circadian gene expression atlas in mammals: implications for biology and medicine, Proc. Natl. Acad. Sci. USA, 111, 16219-16224, https://doi.org/10.1073/pnas.1408886111.

    Article  CAS  PubMed  Google Scholar 

  13. Mure, L. S., Le, H. D., Benegiamo, G., Chang, M. W., Rios, L., et al. (2018) Diurnal transcriptome atlas of a primate across major neural and peripheral tissues, Science, 359, eaao0318, https://doi.org/10.1126/science.aao0318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mohawk, J. A., Green, C. B., and Takahashi, J. S. (2012) Central and peripheral circadian clocks in mammals, Annu. Rev. Neurosci., 35, 445-462, https://doi.org/10.1146/annurev-neuro-060909-153128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, Z., Yoo, S. H., and Takahashi, J. S. (2018) Development and therapeutic potential of small-molecule modulators of circadian systems, Annu. Rev. Pharmacol. Toxicol., 58, 231-252, https://doi.org/10.1146/annurev-pharmtox-010617-052645.

    Article  CAS  PubMed  Google Scholar 

  16. Miller, S., and Hirota, T. (2020) Pharmacological interventions to circadian clocks and their molecular bases, J. Mol. Biol., 432, 3498-3514, https://doi.org/10.1016/j.jmb.2020.01.003.

    Article  CAS  PubMed  Google Scholar 

  17. He, B., and Chen, Z. (2016) Molecular targets for small-molecule modulators of circadian clocks, Curr. Drug Metab., 17, 503-512.

    Article  CAS  Google Scholar 

  18. He, B., Nohara, K., Park, N., Park, Y. S., Guillory, B., et al. (2016) The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome, Cell Metab., 23, 610-621, https://doi.org/10.1016/j.cmet.2016.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shinozaki, A., Misawa, K., Ikeda, Y., Haraguchi, A., Kamagata, M., Tahara, Y., and Shibata, S. (2017) Potent effects of flavonoid nobiletin on amplitude, period, and phase of the circadian clock rhythm in PER2::LUCIFERASE mouse embryonic fibroblasts, PLoS One, 12, e0170904, https://doi.org/10.1371/journal.pone.0170904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mulvihill, E. E., Assini, J. M., Lee, J. K., Allister, E. M., Sutherland, B. G., et al. (2011) Nobiletin attenuates VLDL overproduction, dyslipidemia, and atherosclerosis in mice with diet-induced insulin resistance, Diabetes, 60, 1446-1457, https://doi.org/10.2337/db10-0589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, Y. S., Cha, B. Y., Choi, S. S., Choi, B. K., Yonezawa, T., Teruya, T., Nagai, K., and Woo, J. T. (2013) Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice, J. Nutr. Biochem., 24, 156-162, https://doi.org/10.1016/j.jnutbio.2012.03.014.

    Article  CAS  PubMed  Google Scholar 

  22. Hatori, M., Vollmers, C., Zarrinpar, A., DiTacchio, L., Bushong, E. A., et al. (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet, Cell Metab., 15, 848-860, https://doi.org/10.1016/j.cmet.2012.04.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chaix, A., Zarrinpar, A., Miu, P., and Panda, S. (2014) Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges, Cell Metab., 20, 991-1005, https://doi.org/10.1016/j.cmet.2014.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chaix, A., Lin, T., Le, H. D., Chang, M. W., and Panda, S. (2019) Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock, Cell Metab., 29, 303-319 e304, https://doi.org/10.1016/j.cmet.2018.08.004.

    Article  CAS  PubMed  Google Scholar 

  25. Gibson, E. M., Williams, W. P., 3rd, and Kriegsfeld, L. J. (2009) Aging in the circadian system: considerations for health, disease prevention and longevity, Exp. Gerontol., 44, 51-56, https://doi.org/10.1016/j.exger.2008.05.007.

    Article  PubMed  Google Scholar 

  26. Sato, S., Solanas, G., Peixoto, F. O., Bee, L., Symeonidi, A., et al. (2017) Circadian reprogramming in the liver identifies metabolic pathways of aging, Cell, 170, 664-677.e611, https://doi.org/10.1016/j.cell.2017.07.042.

    Article  CAS  PubMed  Google Scholar 

  27. Kondratova, A. A., and Kondratov, R. V. (2012) The circadian clock and pathology of the ageing brain, Nat .Rev. Neurosci., 13, 325-335, https://doi.org/10.1038/nrn3208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davidson, A. J., Sellix, M. T., Daniel, J., Yamazaki, S., Menaker, M., and Block, G. D. (2006) Chronic jet-lag increases mortality in aged mice, Curr. Biol., 16, R914-916, https://doi.org/10.1016/j.cub.2006.09.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kondratov, R. V., Kondratova, A. A., Gorbacheva, V. Y., Vykhovanets, O. V., and Antoch, M. P. (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock, Genes Dev., 20, 1868-1873, https://doi.org/10.1101/gad.1432206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Inokawa, H., Umemura, Y., Shimba, A., Kawakami, E., Koike, N., et al. (2020) Chronic circadian misalignment accelerates immune senescence and abbreviates lifespan in mice, Sci. Rep., 10, 2569, https://doi.org/10.1038/s41598-020-59541-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nohara, K., Mallampalli, V., Nemkov, T., Wirianto, M., Yang, J., et al. (2019) Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge, Nat. Commun., 10, 3923, https://doi.org/10.1038/s41467-019-11926-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, X., Wang, H., Li, T., Chen, L., Zheng, B., and Liu, R. H. (2020) Nobiletin delays aging and enhances stress resistance of Caenorhabditis elegans, Int. J. Mol. Sci., 21, 341, https://doi.org/10.3390/ijms21010341.

    Article  CAS  PubMed Central  Google Scholar 

  33. Nohara, K., Shin, Y., Park, N., Jeong, K., He, B., Koike, N., Yoo, S. H., and Chen, Z. (2015) Ammonia-lowering activities and carbamoyl phosphate synthetase 1 (Cps1) induction mechanism of a natural flavonoid, Nutr. Metab. (Lond.), 12, 23, https://doi.org/10.1186/s12986-015-0020-7.

    Article  CAS  Google Scholar 

  34. Nohara, K., Nemkov, T., D'Alessandro, A., Yoo, S. H., and Chen, Z. (2019) Coordinate regulation of cholesterol and bile acid metabolism by the clock modifier nobiletin in metabolically challenged old mice, Int. J. Mol. Sci., 20, 4281, https://doi.org/10.3390/ijms20174281.

    Article  CAS  PubMed Central  Google Scholar 

  35. Petrenko, V., Gandasi, N. R., Sage, D., Tengholm, A., Barg, S., and Dibner, C. (2020) In pancreatic islets from type 2 diabetes patients, the dampened circadian oscillators lead to reduced insulin and glucagon exocytosis, Proc. Natl. Acad. Sci. USA, 117, 2484-2495, https://doi.org/10.1073/pnas.1916539117.

    Article  CAS  PubMed  Google Scholar 

  36. Qi, G., Guo, R., Tian, H., Li, L., Liu, H., Mi, Y., and Liu, X. (2018) Nobiletin protects against insulin resistance and disorders of lipid metabolism by reprogramming of circadian clock in hepatocytes, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1863, 549-562, https://doi.org/10.1016/j.bbalip.2018.02.009.

    Article  CAS  PubMed  Google Scholar 

  37. Genova, M. L., and Lenaz, G. (2015) The interplay between respiratory supercomplexes and ROS in aging, Antioxid. Redox Signal., 23, 208-238, https://doi.org/10.1089/ars.2014.6214.

    Article  CAS  PubMed  Google Scholar 

  38. Guo, R., Zong, S., Wu, M., Gu, J., and Yang, M. (2017) Architecture of human mitochondrial respiratory megacomplex I2III2IV2, Cell, 170, 1247-1257.e1212, https://doi.org/10.1016/j.cell.2017.07.050.

    Article  CAS  PubMed  Google Scholar 

  39. Mileykovskaya, E., and Dowhan, W. (2014) Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes, Chem. Phys. Lipids, 179, 42-48, https://doi.org/10.1016/j.chemphyslip.2013.10.012.

    Article  CAS  PubMed  Google Scholar 

  40. Mileykovskaya, E., Penczek, P. A., Fang, J., Mallampalli, V. K., Sparagna, G. C., and Dowhan, W. (2012) Arrangement of the respiratory chain complexes in Saccharomyces cerevisiae supercomplex III2IV2 revealed by single particle cryo-electron microscopy, J. Biol. Chem., 287, 23095-23103, https://doi.org/10.1074/jbc.M112.367888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pfeiffer, K., Gohil, V., Stuart, R. A., Hunte, C., Brandt, U., Greenberg, M. L., and Schagger, H. (2003) Cardiolipin stabilizes respiratory chain supercomplexes, J. Biol. Chem., 278, 52873-52880, https://doi.org/10.1074/jbc.M308366200.

    Article  CAS  PubMed  Google Scholar 

  42. Azuma, K., Ikeda, K., and Inoue, S. (2020) Functional mechanisms of mitochondrial respiratory chain supercomplex assembly factors and their involvement in muscle quality, Int. J. Mol. Sci., 21, 3182, https://doi.org/10.3390/ijms21093182.

    Article  CAS  PubMed Central  Google Scholar 

  43. Ghosh, S., Iadarola, D. M., Ball, W. B., and Gohil, V. M. (2019) Mitochondrial dysfunctions in Barth syndrome, IUBMB Life, 71, 791-801, https://doi.org/10.1002/iub.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nohara, K., Kim, E., Wirianto, M., Mileykovskaya, E., Dowhan, W., Chen, Z., and Yoo, S.-H. (2020) Cardiolipin synthesis in skeletal muscle is rhythmic and modifiable by age and diet, Oxid. Med. Cell. Longev., 2020, 5304768, https://doi.org/10.1155/2020/5304768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gile, J., Scott, B., and Eckle, T. (2018) The period 2 enhancer nobiletin as novel therapy in murine models of circadian disruption resembling delirium, Crit. Care Med., 46, e600-e608, https://doi.org/10.1097/CCM.0000000000003077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jojua, N., Sharikadze, N., Zhuravliova, E., Zaalishvili, E., and Mikeladze, D. G. (2015) Nobiletin restores impaired hippocampal mitochondrial bioenergetics in hypothyroidism through activation of matrix substrate-level phosphorylation, Nutr. Neurosci., 18, 225-231, https://doi.org/10.1179/1476830514Y.0000000120.

    Article  CAS  PubMed  Google Scholar 

  47. Nakajima, A., Ohizumi, Y., and Yamada, K. (2014) Anti-dementia activity of nobiletin, a citrus flavonoid: a review of animal studies, Clin. Psychopharmacol. Neurosci., 12, 75-82, https://doi.org/10.9758/cpn.2014.12.2.75.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nakajima, A., Aoyama, Y., Shin, E. J., Nam, Y., Kim, H. C., et al. (2015) Nobiletin, a citrus flavonoid, improves cognitive impairment and reduces soluble Abeta levels in a triple transgenic mouse model of Alzheimer’s disease (3XTg-AD), Behav. Brain Res., 289, 69-77, https://doi.org/10.1016/j.bbr.2015.04.028.

    Article  CAS  PubMed  Google Scholar 

  49. Seki, T., Kamiya, T., Furukawa, K., Azumi, M., Ishizuka, S., et al. (2013) Nobiletin-rich Citrus reticulata peels, a kampo medicine for Alzheimer’s disease: a case series, Geriatr. Gerontol. Int., 13, 236-238, https://doi.org/10.1111/j.1447-0594.2012.00892.x.

    Article  PubMed  Google Scholar 

  50. Bass, J., and Takahashi, J. S. (2010) Circadian integration of metabolism and energetics, Science, 330, 1349-1354, https://doi.org/10.1126/science.1195027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nohara, K., Yoo, S. H., and Chen, Z. J. (2015) Manipulating the circadian and sleep cycles to protect against metabolic disease, Front. Endocrinol. (Lausanne), 6, 35, https://doi.org/10.3389/fendo.2015.00035.

    Article  Google Scholar 

  52. Cederroth, C. R., Albrecht, U., Bass, J., Brown, S. A., Dyhrfjeld-Johnsen, J., et al. (2019) Medicine in the fourth dimension, Cell Metab., 30, 238-250, https://doi.org/10.1016/j.cmet.2019.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Montaigne, D., Marechal, X., Modine, T., Coisne, A., Mouton, S., et al. (2018) Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbalpha antagonism: a single-centre propensity-matched cohort study and a randomised study, Lancet, 391, 59-69, https://doi.org/10.1016/S0140-6736(17)32132-3.

    Article  PubMed  Google Scholar 

  54. Chen, Z. (2017) What’s next for chronobiology and drug discovery, Expert Opin. Drug Discov., 12, 1181-1185, https://doi.org/10.1080/17460441.2017.1378179.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The following authors wish to acknowledge financial support of their laboratories: S.-H. Y. – The Welch Foundation (grant AU-1971-20180324), NIH/NIGMS (grant R01GM114424) and NIH/NIA (grant R03AG063286); W. D. – NIH/NIGMS (grant R01GM115969) and John S. Dunn Research Foundation Grant; Z. C. – The Welch Foundation (grant AU-1731-20190330) and NIH/NIA (grants R01AG045828, RF1AG061901, R56AG063746, and R01AG065984).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Mileykovskaya or Z. Chen.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mileykovskaya, E., Yoo, SH., Dowhan, W. et al. Nobiletin: Targeting the Circadian Network to Promote Bioenergetics and Healthy Aging. Biochemistry Moscow 85, 1554–1559 (2020). https://doi.org/10.1134/S000629792012007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792012007X

Keywords

Navigation