Skip to main content
Log in

Intricate evolutions of multiple-period post-buckling patterns in bilayers

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Surface instability of compliant film/substrate bilayers has raised considerable interests due to its broad applications such as wrinkle-driven surface renewal and antifouling, shape-morphing for camouflaging skins, and micro/nano-scale surface patterning control. However, it is still a challenge to precisely predict and continuously trace secondary bifurcation transitions in the nonlinear post-buckling region. Here, we develop lattice models to precisely capture the nonlinear morphology evolution with multiple mode transitions that occur in the film/substrate systems. Based on our models, we reveal an intricate post-buckling phenomenon involving successive flat-wrinkle-doubling-quadrupling-fold bifurcations. Pre-stretch and pre-compression of the substrate, as well as bilayer modulus ratio, can alter surface morphology of film/substrate bilayers. With high substrate pre-tension, hierarchical wrinkles emerge in the bilayer with a low modulus ratio, while a wrinkle-to-ridge transition occurs with a high modulus ratio. Besides, with moderate substrate pre-compression, the bilayer eventually evolves into a period-tripling mode. Phase diagrams based on neo-Hookean and Arruda-Boyce constitutions are drawn to characterize the influences of different factors and to provide an overall view of ultimate pattern formation. Fundamental understanding and quantitative prediction of the nonlinear morphological transitions of soft bilayer materials hold potential for multifunctional surface regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yang, H. H. Dai, F. Xu, and M. Potier-Ferry, Phys. Rev. Lett. 120, 215503 (2018), arXiv: 1805.07540.

    ADS  Google Scholar 

  2. Y. Li, Nat. Phys. 14, 534 (2018).

    Google Scholar 

  3. F. Xu, C. Fu, and Y. Yang, Phys. Rev. Lett. 124, 038003 (2020), arXiv: 2001.02148.

    ADS  Google Scholar 

  4. K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, Nat. Mater. 4, 293 (2005).

    ADS  Google Scholar 

  5. P. Sáez, and A. M. Zöllner, Ann. Biomed. Eng. 45, 1039 (2017).

    Google Scholar 

  6. P. Ciarletta, V. Balbi, and E. Kuhl, Phys. Rev. Lett. 113, 248101 (2014).

    ADS  Google Scholar 

  7. H. F. Chan, R. Zhao, G. A. Parada, H. Meng, K. W. Leong, L. G. Griffith, and X. Zhao, Proc. Natl. Acad. Sci. USA 115, 7503 (2018).

    ADS  Google Scholar 

  8. J. Yin, Z. Cao, C. Li, I. Sheinman, and X. Chen, Proc. Natl. Acad. Sci. USA 105, 19132 (2008).

    ADS  Google Scholar 

  9. B. Li, Y. P. Cao, X. Q. Feng, and H. Gao, Soft Matter 8, 5728 (2012).

    ADS  Google Scholar 

  10. M. A. Biot, Appl. Sci. Res. 12, 168 (1963).

    Google Scholar 

  11. H. G. Allen, Analysis and Design of Structural Sandwich Panels (Pergamon Press, New York, 1969).

    Google Scholar 

  12. F. Brau, H. Vandeparre, A. Sabbah, C. Poulard, A. Boudaoud, and P. Damman, Nat. Phys. 7, 56 (2011), arXiv: 1006.2404.

    Google Scholar 

  13. Y. Cao, and J. W. Hutchinson, J. Appl. Mech. 79, 031019 (2012).

    ADS  Google Scholar 

  14. S. Budday, E. Kuhl, and J. W. Hutchinson, Philos. Mag. 95, 3208 (2015).

    ADS  Google Scholar 

  15. S. Budday, S. Andres, P. Steinmann, and E. Kuhl, Proc. Appl. Math. Mech. 15, 281 (2015).

    Google Scholar 

  16. A. Auguste, J. Yang, L. Jin, D. Chen, Z. Suo, and R. C. Hayward, Soft Matter 14, 8545 (2018).

    ADS  Google Scholar 

  17. L. Pocivavsek, R. Dellsy, A. Kern, S. Johnson, B. Lin, K. Y. C. Lee, and E. Cerda, Science 320, 912 (2008).

    ADS  Google Scholar 

  18. E. Sultan, and A. Boudaoud, J. Appl. Mech. 75, 051002 (2008), arXiv: cond-mat/0701640.

    ADS  Google Scholar 

  19. J. Y. Sun, S. Xia, M. W. Moon, K. H. Oh, and K. S. Kim, Proc. R. Soc. A. 468, 932 (2012).

    ADS  Google Scholar 

  20. B. Li, Y. P. Cao, X. Q. Feng, and H. Gao, J. Mech. Phys. Solids 59, 758 (2011).

    ADS  MathSciNet  Google Scholar 

  21. J. Zang, X. Zhao, Y. Cao, and J. W. Hutchinson, J. Mech. Phys. Solids 60, 1265 (2012).

    ADS  Google Scholar 

  22. J. W. Hutchinson, Phil. Trans. R. Soc. A. 371, 20120422 (2013).

    ADS  Google Scholar 

  23. A. Auguste, L. Jin, Z. Suo, and R. C. Hayward, Soft Matter 10, 6520 (2014).

    ADS  Google Scholar 

  24. Y. Zhao, Y. Cao, W. Hong, M. K. Wadee, and X. Q. Feng, Proc. R. Soc. A. 471, 20140695 (2015).

    ADS  Google Scholar 

  25. S. Budday, S. Andres, B. Walter, P. Steinmann, and E. Kuhl, Phil. Trans. R. Soc. A. 375, 20160163 (2017).

    ADS  Google Scholar 

  26. L. Zhuo, and Y. Zhang, Int. J. Non-Linear Mech. 76, 1 (2015).

    ADS  Google Scholar 

  27. Y. B. Fu, and Z. X. Cai, SIAM J. Appl. Math. 75, 2381 (2015).

    MathSciNet  Google Scholar 

  28. G. F. Zhao, J. Fang, and J. Zhao, Int. J. Numer. Anal. Meth. Geomech. 35, 859 (2011).

    Google Scholar 

  29. E. Schlangen, and E. J. Garboczi, Eng. Fract. Mech. 57, 319 (1997).

    Google Scholar 

  30. J. Kozicki, and J. Tejchman, Granul. Matter 10, 377 (2008).

    Google Scholar 

  31. Z. P. Bažant, M. R. Tabbara, M. T. Kazemi, and G. Pijaudier-Cabot, J. Eng. Mech. 116, 1686 (1990).

    Google Scholar 

  32. M. Ostoja-Starzewski, P. Y. Sheng, and K. Alzebdeh, Comput. Mater. Sci. 7, 82 (1996).

    Google Scholar 

  33. V. V. Yashin, and A. C. Balazs, Science 314, 798 (2006).

    ADS  MathSciNet  Google Scholar 

  34. T. Zhang, V. V. Yashin, and A. C. Balazs, Soft Matter 14, 1822 (2018).

    ADS  Google Scholar 

  35. M. Böl, and S. Reese, Int. J. Solids Struct. 43, 2 (2006).

    Google Scholar 

  36. S. Reese, M. Böl, and D. Christ, Comput. Methods Appl. Mech. Eng. 199, 1276 (2010).

    ADS  Google Scholar 

  37. T. Zhang, Extreme Mech. Lett. 26, 40 (2019).

    Google Scholar 

  38. R. W. Ogden, Non-Linear Elastic Deformations (Dover Publications, New York, 1997).

    Google Scholar 

  39. E. A. de Souza Neto, D. Perić, M. Dutko, and D. R. J. Owen, Int. J. Solids Struct. 33, 3277 (1996).

    Google Scholar 

  40. G. A. Holazpfel, Biomechanics of soft tissue, in: Handbook of Materials Behavior Models, Volume III, Multiphysics Behaviors, edited by J. Lemaitre (Academic Press, Boston, 2001).

    Google Scholar 

  41. E. M. Arruda, and M. C. Boyce, J. Mech. Phys. Solids 41, 389 (1993).

    ADS  Google Scholar 

  42. F. Xu, and M. Potier-Ferry, J. Mech. Phys. Solids 86, 150 (2016).

    ADS  MathSciNet  Google Scholar 

  43. C. Lu, S. Yu, H. Li, H. Zhou, Z. Jiao, and L. Li, Adv. Mater. Interfaces 7, 1902188 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Xu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11872150, 11772094, and 11890673), the Shanghai Rising-Star Program (Grant No. 19QA1400500), the Shanghai Chenguang Program (Grant No. 16CG01), and the State Key Laboratory for Strength and Vibration of Mechanical Structures (Grant No. SV2018-KF-17).

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Xu, F. Intricate evolutions of multiple-period post-buckling patterns in bilayers. Sci. China Phys. Mech. Astron. 64, 214611 (2021). https://doi.org/10.1007/s11433-020-1620-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1620-0

Keywords

Navigation