Skip to main content
Log in

New Temporal Asymptotics of the Survival Probability in the Capture of Particles in Traps in Media with Anomalous Diffusion

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The problem of capture of particles experiencing normal diffusion as well as anomalous subdiffusion to absorbing traps has been investigated. It is shown that two characteristic diffusion times (and, accordingly, three time intervals) emerge in such a problem. It is established that new temporal (power-law and fractional–exponential) asymptotic forms of the particle survival probability appear in these intervals, which are determined by the character of diffusion of particles in strongly anisotropic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. A. Ovchinnikov and A. A. Belyi, Teor. Eksp. Khim. 2, 405 (1966).

    Google Scholar 

  2. G. V. Ryazanov, Sov. J. Theor. Math. Phys. 10, 181 (1972).

    Article  Google Scholar 

  3. I. M. Lifshits, Sov. Phys. Usp. 7, 549 (1965).

    Article  ADS  Google Scholar 

  4. E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).

    Article  ADS  Google Scholar 

  5. J. Klafter and I. M. Sokolov, First Steps in Random Walks (Oxford Press Univ., Oxford, 2011).

    Book  Google Scholar 

  6. V. V. Uchaikin, J. Exp. Theor. Phys. 97, 810 (2003).

    Article  ADS  Google Scholar 

  7. R. Metzler and J. Klafter, Adv. Chem. Phys. 116, 223 (2001).

    Google Scholar 

  8. J. Klafter and R. Metzler, Phys. Rep. 339, 1 (2000).

    Article  ADS  Google Scholar 

  9. Applications of Fractional Calculus in Physics, Ed. by R. Hilfer (World Scientific, Singapore, 2000).

    MATH  Google Scholar 

  10. G. Weiss and S. Havlin, Phys. A (Amsterdam, Neth.) 134, 810 (1986).

  11. V. E. Arkhincheev and E. M. Baskin, Sov. Phys. JETP 73, 161 (1991).

    Google Scholar 

  12. V. E. Arkhincheev, Phys. A (Amsterdam, Neth.) 307, 131 (2002).

  13. V. E. Arkhincheev, Chaos 17, 043102 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  14. V. E. Arkhincheev, J. Exp. Theor. Phys. 131, 482 (2020).

    Article  ADS  Google Scholar 

  15. Ya. B. Zel’dovich and A. D. Myshkis, Elements of Applied Mathematics (Nauka, Moscow, 1973; Mir, Moscow, 1976).

  16. F. Benitez, C. Duclut, H. Chate, et al., Phys. Rev. Lett. 117, 100601 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  17. Sang Bub Lee, In Chan Kim, C. A. Miller, and S. Torquato, Phys. Rev. B 39, 11833 (1989).

    Article  ADS  Google Scholar 

  18. G. J. Lapeyre and M. Dentz, Phys. Chem. Chem. Phys. 19, 29 (2017).

    Article  Google Scholar 

  19. V. E. Arkhincheev, Sci. Rep. 9, 15269 (2019).

    Article  ADS  Google Scholar 

  20. V. Mendez, A. Iomin, D. Campos, and W. Horsthemke, Phys. Rev. E 92, 062112 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. M. Berezhkovskii, L. Dagdug, and S. M. Bezrukov, J. Chem. Phys. 142, 134101 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Arkhincheev.

Additional information

Translated by N. Wadhwa

APPENDIX

APPENDIX

1.1 Problem of Capture of Diffusing Particles in Media with Traps

Let us briefly recall the known results. According to the general approach [1–3], the solution to standard diffusion equation

$$\frac{{\partial W(t)}}{{\partial t}} = D\frac{{{{\partial }^{2}}W{{{(t)}}^{2}}}}{{\partial t}}$$
(21)

with initial and boundary conditions

$$W(x,0) = \frac{{1 - c}}{L},\quad W({{x}_{i}},t) = W({{x}_{{i + 1}}},t) = 0$$
(22)

is constructed. Here, L is the length of the one-dimensional chain and xi, xi + 1 are the coordinates of absorbing traps along the 1D line. The solution has form

$$W(x,t) = \frac{4}{L}\sum\limits_{n = 0}^\infty {\exp \left( { - \frac{{Dk_{n}^{2}t}}{2}} \right)\frac{{\sin ({{k}_{n}}(x - {{x}_{i}}))}}{{{{k}_{n}}{{l}_{i}}}}.} $$
(23)

Further, the obtained solution is averaged over the random distribution of absorbing traps:

$$W(t) = \sum\limits_i^{} {{{W}_{i}} = \sum\limits_i^{} {\int\limits_{{{x}_{i}}}^{{{x}_{{i + 1}}}} {W(x,t)\partial x.} } } $$
(24)

The corresponding averaged solution obtained in this way describes the survival probability of particles after their capture in absorbing traps.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhincheev, V.E. New Temporal Asymptotics of the Survival Probability in the Capture of Particles in Traps in Media with Anomalous Diffusion. J. Exp. Theor. Phys. 131, 741–744 (2020). https://doi.org/10.1134/S1063776120100027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120100027

Navigation