Skip to main content
Log in

Electronic Structure and Conductivity of a Disordered A1 – xBx Binary Alloy in the Cluster Approach for the Hubbard Model

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a method for calculating the electronic band structure of disordered systems with strong electron correlations. Various approaches to the description of electrical conductivity of disordered systems are considered. Calculations are based on determining the one-particle Green function of the system, which is averaged over different configurations of a cluster, on the Boltzmann formalism, and the Kubo linear response theory. As the basic model, we use the Hubbard model for an A1 – xBx binary alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. J. Elliott, J. A. Krumhansl, and P. L. Leath, Rev. Mod. Phys. 46, 465 (1974).

    Article  ADS  Google Scholar 

  2. J. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge Univ. Press, Cambridge, New York, 1979).

    Google Scholar 

  3. I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Nauka, Moscow, 1982; Wiley, New York, 1988).

  4. R. Mills and P. Ratenavaraksa, Phys. Rev. B 18, 5291 (1978).

    Article  ADS  Google Scholar 

  5. V. F. Los’ and S. P. Repetsky, J. Phys.: Condens. Matter 6, 1707 (1994).

    ADS  Google Scholar 

  6. S. P. Repetsky, Ye. G. Len, and N. V. Chubinsky, Met. Phys. Adv. Tech. 17, 867 (1999).

    Google Scholar 

  7. S. P. Repetskii, V. B. Molodkin, I. G. Vyshivanaya, E. G. Len’, I. N. Mel’nik, O. I. Musienko, and B. V. Stashchuk, Usp. Fiz. Met. 10, 283 (2009).

    Article  Google Scholar 

  8. M. A. Krivoglaz and A. A. Smirnov, Ordering Alloy Theory (Fizmatgiz, Moscow, 1958) [in Russian].

    Google Scholar 

  9. S. M. Borodachev, V. A. Volkov, and S. I. Masharov, Fiz. Met. Metalloved. 42, 1147 (1976).

    Google Scholar 

  10. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  11. L. P. Gor’kov, A. I. Larkin, and D. E. Khmel’nitskii, JETP Lett. 30, 228 (1979).

    ADS  Google Scholar 

  12. E. Abrahams, P. W. Anderson, D. S. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

    Article  ADS  Google Scholar 

  13. G. Bergmann, Phys. Rep. 107, 1 (1984).

    Article  ADS  Google Scholar 

  14. R. Flederling, M. Kelm, G. Reuseher, M. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature (London, U.K.) 402, 787 (1999).

    Article  ADS  Google Scholar 

  15. G. A. Prinz, Phys. Today 48, 5863 (1995).

    Google Scholar 

  16. S. Borukhovich, Phys. Usp. 42, 653 (1999).

    Article  ADS  Google Scholar 

  17. D. Senechal, D. Perez, and M. Pioro-Ladriere, Phys. Rev. Lett. 84, 522 (2000).

    Article  ADS  Google Scholar 

  18. D. Senechal, D. Perez, and D. Plouffe, Phys. Rev. B 66, 075129 (2002).

    Article  ADS  Google Scholar 

  19. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).

    Article  ADS  Google Scholar 

  20. E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Springer, Berlin, 2003).

    Book  Google Scholar 

  21. S. V. Nikolaev and S. G. Ovchinnikov, J. Exp. Theor. Phys. 111, 635 (2010).

    Article  ADS  Google Scholar 

  22. S. V. Nikolaev and S. G. Ovchinnikov, J. Exp. Theor. Phys. 114, 118 (2012).

    Article  ADS  Google Scholar 

  23. M. W. Haverkort, I. S. Elfimov, and G. A. Sawatzky, arXiv: 1109.4036v1 [cond-mat.mtrl-sci].

  24. M. V. Sadovskii, Phys. Usp. 44, 515 (2001).

    Article  ADS  Google Scholar 

  25. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

    Article  ADS  Google Scholar 

  26. G. D. Mahan, Many-Particle Physics (Springer, US, 2000).

    Book  Google Scholar 

  27. D. J. Scalapino, Phys. Rev. B 47, 7995 (1993).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Prof. S.G. Ovchinnikov for discussion of the results and for valuable remarks.

Funding

This study was supported by the Foundation “Basis” for development of theoretical physics and mathematics, Russian Foundation for Basic Research (project no. 19-03-00017), Government of Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science according to the research project “Electronic correlation effects and multiorbital physics in iron-based materials and cuprates” (no. 19-42-240007) and research project “Features of electron-phonon coupling in high-temperature superconductors with strong electronic correlations” (no. 18-42-240017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Nikolaev or Yu. S. Orlov.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, S.V., Orlov, Y.S. & Dudnikov, V.A. Electronic Structure and Conductivity of a Disordered A1 – xBx Binary Alloy in the Cluster Approach for the Hubbard Model. J. Exp. Theor. Phys. 131, 823–837 (2020). https://doi.org/10.1134/S1063776120100131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120100131

Navigation