Skip to main content
Log in

“Unmoved” Atomic Transitions of Alkali Metals in External Magnetic Fields

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The “mixing” of magnetic sublevels of the ground and excited levels of an atomic transition with magnetic sublevels of a nearby transition (in the hyperfine structure of atoms of alkali metals) is responsible for a strong modification of its probability. A dramatic manifestation of this mixing effect is a huge increase in the probability of the atomic transition in magnetic fields that is forbidden by selection rules in zero magnetic field B = 0; the latter is called a magnetically induced (MI) transition. Two MI transitions with different dependences on B have been studied. Another dramatic manifestation of the mixing effect is that there are atomic transitions whose frequency is practically fixed in a wide range of magnetic fields, i.e., the slope S [MHz/G] of the frequency shifts as a function of B is practically zero, with the transition probability being significant. We call these transitions “unmoved” transitions (UTs). We have studied the UTs of 87Rb atoms, the D2 line, |1, +1〉 → |1', +1'〉 and Cs atoms, the D2 line, |3, –3〉 → |5', –4'〉, where the quantum numbers F and mF of the excited and ground levels are marked with and without primes, respectively. We show that in the range B = 180–705 G for 87Rb, the D2 line, |S| ≤ 0.03 MHz/G; for comparison, S ≈ 3.6 MHz/G for 87Rb in the same B range for the MI transition |1, +1〉 → |3', +2'〉 is greater by a factor of 120. A second laser was used to control the UT amplitude. Our theoretical model describes well the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. Sargsyan, G. Hakhumyan, A. Papoyan, D. Sarkisyan, A. Atvars, and M. Auzinsh, Appl. Phys. Lett. 93, 021119 (2008).

    Article  ADS  Google Scholar 

  2. G. Hakhumyan, C. Leroy, R. Mirzoyan, Y. Pashayan-Leroy, and D. Sarkisyan, Europhys. J. D 66, 119 (2012).

    ADS  Google Scholar 

  3. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 37, 1379 (2012).

    Article  ADS  Google Scholar 

  4. A. Sargsyan, R. Mirzoyan, T. Vartanyan, and D. Sarkisyan, J. Exp. Theor. Phys. 118, 359 (2014).

    Article  ADS  Google Scholar 

  5. A. Sargsyan, A. Amiryan, Y. Pashayan-Leroy, C. Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 44, 5533 (2019).

    Article  ADS  Google Scholar 

  6. B. A. Olsen, B. Patton, Y. Y. Jau, and W. Happer, Phys. Rev. A 84, 063410 (2011).

    Article  ADS  Google Scholar 

  7. M. A. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, Comput. Phys. Commun. 189, 162 (2015).

    Article  ADS  Google Scholar 

  8. D. A. Steck, Rubidium 87 D Line Data, revision 2.1.5. http://steck.us/alkalidata.

  9. A. Sargsyan, B. Glushko, and D. Sarkisyan, J. Exp. Theor. Phys. 120, 579 (2015).

    Article  ADS  Google Scholar 

  10. L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, C. S. Adams, and I. G. Hughes, J. Phys. B 45, 215005 (2012).

    Article  ADS  Google Scholar 

  11. M. A. Zentile, R. Andrews, L. Weller, S. Knappe, C. S. Adams, and I. G. Hughes, J. Phys. B 47, 075005 (2014).

    Article  ADS  Google Scholar 

  12. M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding Light-Atom Interactions (Oxford Univ. Press, Oxford, 2010).

    MATH  Google Scholar 

  13. A. Sargsyan, G. Hakhumyan, A. Papoyan, and D. Sarkisyan, JETP Lett. 101, 303 (2015).

    Article  ADS  Google Scholar 

  14. E. Klinger, A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, C. Leroy, and D. Sarkisyan, Europhys. J. D 71, 216 (2017).

    ADS  Google Scholar 

  15. A. Sargsyan, E. Klinger, C. Leroy, T. A. Vartanyan, and D. Sarkisyan, Opt. Spectrosc. 127, 411 (2019).

    Article  ADS  Google Scholar 

  16. A. Sargsyan, A. Tonoyan, G. Hakhumyan, and D. Sarkisyan, JETP Lett. 106, 700 (2017).

    Article  ADS  Google Scholar 

  17. T. Peyrot, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, J. Keaveney, I. G. Hughes, and C. S. Adams, Phys. Rev. Lett. 120, 243401 (2018).

    Article  ADS  Google Scholar 

  18. P. Tremblay, A. Michaud, M. Levesque, S. Theriault, M. Breton, J. Beaubien, and N. Cyr, Phys. Rev. A 42, 2766 (1990).

    Article  ADS  Google Scholar 

  19. S. Scotto, D. Ciampini, C. Rizzo, and E. Arimondo, Phys. Rev. A 92, 063810 (2015).

    Article  ADS  Google Scholar 

  20. A. Savitzky and M. J. E. Golay, Anal. Chem. 36, 1627 (1964).

    Article  ADS  Google Scholar 

  21. G. Talsky, Derivative Spectrophotometry (Wiley-VCH, Weinheim, 1994).

    Book  Google Scholar 

  22. A. Sargsyan, A. Tonoyan, A. Papoyan, and D. Sarkisyan, Opt. Lett. 44, 1391 (2019).

    Article  ADS  Google Scholar 

  23. J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).

    Article  ADS  Google Scholar 

  24. T. Peyrot, Ch. Beurthe, S. Coumar, M. Roulliay, K. Perronet, P. Bonnay, C. S. Adams, A. Browaeys, and Y. R. P. Sortais, Opt. Lett. 44, 1940 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A. Tonoyan for the useful discussion.

Funding

This study was supported by the Committee on Science of the Ministry of Education, Science, Culture, and Sports of the Republic of Armenia (project nos. 18T-1CO18 and 19YR-1C017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Hakhumyan or A. Sargsyan.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkisyan, D., Hakhumyan, G. & Sargsyan, A. “Unmoved” Atomic Transitions of Alkali Metals in External Magnetic Fields. J. Exp. Theor. Phys. 131, 671–678 (2020). https://doi.org/10.1134/S1063776120100143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120100143

Navigation