Skip to main content
Log in

Self-Localization of Light Beams in a Medium with Instantaneous Kerr Nonlinearity Switching

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A model is proposed for the nonlinear response of a medium in which the permittivity depending on the field intensity is instantaneously switched when the field amplitude reaches a certain value. The propagation of a self-channeled light beam in a medium with such a nonlinearity and with the same type of the Kerr response (self-focusing or defocusing) is considered. It is shown that when the switching field exceeds the threshold value, a symmetric finite-length region (domain) with different optical properties is formed along the beam channel. Three cases of combination of the nonlinearity signs and the values of the effective refractive index are considered. In the focusing medium, the power of radiation propagating along the interface is higher than in the defocusing medium. In the defocusing medium, there exists a threshold value of the total luminous energy flux, beginning with which self-localization can occur, when the values of the effective refractive index lie between the unperturbed dielectric constants of the medium and of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. H. N. Kishikawa and N. Goto, Opt. Eng. 46, 044602 (2007).

    Article  ADS  Google Scholar 

  2. C. Ironside, Semiconductor Integrated Optics for Switching Light (Morgan and Claypool, Bristol, UK, 2017).

    Book  Google Scholar 

  3. A. Goodarzi, M. Ghanaatshoar, and M. Mozafari, Sci. Rep. 8, 15340 (2018).

    Article  ADS  Google Scholar 

  4. Surface Waves: New Trends and Developments, Ed. by F. Ebrahimi (IntechOpen, Rijeka, Croatia, 2018).

    Google Scholar 

  5. E. C. Jarque and V. A. Malyshev, Opt. Commun. 142, 66 (1997).

    Article  ADS  Google Scholar 

  6. A. Schuzgen, N. Peyghambarian, and S. Hughes, Phys. Status Solidi B 206, 125 (1999).

    Article  ADS  Google Scholar 

  7. P. I. Khadzhi and L. V. Fedorov, Sov. Tech. Phys. 36, 564 (1991).

    Google Scholar 

  8. N. N. Beletskii and E. A. Gasan, Phys. Solid State 36, 357 (1994).

    ADS  Google Scholar 

  9. K. D. Lyakhomskaya and P. I. Khadzhi, Tech. Phys. 45, 1457 (2000).

    Article  Google Scholar 

  10. A. E. Kaplan, IEEE J. Quant. Electron. 21, 1538 (1985).

    Article  ADS  Google Scholar 

  11. R. H. Enns, S. S. Rangnekar, and A. E. Kaplan, Phys. Rev. A 35, 466 (1987).

    Article  ADS  Google Scholar 

  12. V. E. Wood, E. D. Evans, and R. P. Kenan, Opt. Commun. 69, 156 (1988).

    Article  ADS  Google Scholar 

  13. S. Gatz and J. Herrmann, J. Opt. Soc. Am. B 8, 2296 (1991).

    Article  ADS  Google Scholar 

  14. J. Herrmann, J. Opt. Soc. Am. B 8, 1507 (1991).

    Article  ADS  Google Scholar 

  15. L. V. Fedorov and K. D. Lyakhomskaya, Tech. Phys. Lett. 23, 915 (1997).

    Article  ADS  Google Scholar 

  16. K. Zhan, H. Tian, X. Li, X. Xu, Z. Jiao, and Y. Jia, Sci. Rep. 6, 32990 (2016).

    Article  ADS  Google Scholar 

  17. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Nauka, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  18. S. Bian, J. Frejlich, and K. H. Ringhofer, Phys. Rev. Lett. 78, 4035 (1997).

    Article  ADS  Google Scholar 

  19. V. N. Belyi and N. A. Khilo, Tech. Phys. Lett. 23, 467 (1997).

    Article  ADS  Google Scholar 

  20. S. M. Shandarov and E. S. Shandarov, Tech. Phys. Lett. 23, 586 (1997).

    Article  ADS  Google Scholar 

  21. D. Kh. Usievich, B. A. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, Quantum Electron. 40, 437 (2010).

    Article  ADS  Google Scholar 

  22. D. Kh. Usievich, B. A. Nurligareev, V. A. Sychugov, and L. I. Ivleva, Quantum Electron. 41, 924 (2011).

    Article  ADS  Google Scholar 

  23. S. A. Chetkin and I. M. Akhmedzhanov, Quantum Electron. 41, 980 (2011).

    Article  ADS  Google Scholar 

  24. D. Kh. Usievich, B. A. Nurligareev, V. A. Sychugov, and L. I. Ivleva, Quantum Electron. 43, 14 (2013).

    Article  ADS  Google Scholar 

  25. S. E. Savotchenko, Solid State Commun. 296, 32 (2019).

    Article  ADS  Google Scholar 

  26. S. E. Savotchenko, JETP Lett. 109, 744 (2019).

    Article  ADS  Google Scholar 

  27. S. E. Savotchenko, J. Exp. Theor. Phys. 129, 159 (2019).

    Article  ADS  Google Scholar 

  28. S. E. Savotchenko, Quantum Electron. 49, 850 (2019).

    Article  ADS  Google Scholar 

  29. S. E. Savotchenko, Kondens. Sredy Mezhfaz. Granitsy 21, 441 (2019).

    Google Scholar 

  30. S. E. Savotchenko, Russ. Phys. J. 63, 160 (2020).

    Article  Google Scholar 

  31. S. E. Savotchenko, Opt. Spectrosc. 128, 345 (2020).

    Article  ADS  Google Scholar 

  32. S. E. Savotchenko, Phys. Solid State 62, 1011 (2020).

    Article  ADS  Google Scholar 

  33. J. M. Christian, G. S. McDonald, and P. Chamorro-Posada, J. Opt. Soc. Am. B 26, 2323 (2009).

    Article  ADS  Google Scholar 

  34. R. H. Enns, S. S. Rangnekar, and A. E. Kaplan, Phys. Rev. A 36, 1270 (1987).

    Article  ADS  Google Scholar 

  35. R. H. Enns and S. S. Rangnekar, Opt. Lett. 12, 108 (1987).

    Article  ADS  Google Scholar 

  36. P. I. Khadzhi, G. D. Shibarshina, and A. Kh. Rotaru, Optical Bistability in a System of Coherent Excitons and Biexcitons in Semiconductors (Shtiintsa, Kishinev, 1988) [in Russian].

  37. S. E. Savotchenko, Pramana J. Phys. 93, 77 (2019).

    Google Scholar 

  38. S. E. Savotchenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. (in press).

  39. J. M. Takayama, G. S. McDonald, and P. J. Chamorro-Posada, Opt. Soc. Am. B 26, 2323 (2009).

    Article  ADS  Google Scholar 

  40. P. Roussignol, D. Ricard, J. Lukasik, and C. Flytzanis, J. Opt. Soc. Am. B 4, 5 (1987).

    Article  ADS  Google Scholar 

  41. J.-L. Coutaz and M. Kull, J. Opt. Soc. Am. B 8, 95 (1991).

    Article  ADS  Google Scholar 

  42. T. Catunda and L. A. Cury, J. Opt. Soc. Am. B 7, 1445 (1990).

    Article  ADS  Google Scholar 

  43. Q. Wang Song, C. Zhang, R. B. Gross, and R. R. Birde, Opt. Commun. 112, 296 (1994).

    Article  ADS  Google Scholar 

  44. Q. Wang Song, X. Wang, R. R. Birge, J. D. Downie, D. Timucin, and C. Gary, J. Opt. Soc. Am. B 15, 1602 (1998).

    Article  ADS  Google Scholar 

  45. B. A. Naim, Chin. J. Phys. 55, 2384 (2017).

    Article  Google Scholar 

  46. M. Liu, D. A. Powell, Y. Zarate, and I. V. Shadrivov, Phys. Rev. X 8, 031077 (2018).

    Google Scholar 

  47. Y. Jia, Y. Liao, L. Wu, Y. Shan, X. Dai, H. Cai, Y. Xiang, and D. Fan, Nanoscale 7, 4515 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Savotchenko.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savotchenko, S.E. Self-Localization of Light Beams in a Medium with Instantaneous Kerr Nonlinearity Switching. J. Exp. Theor. Phys. 131, 679–688 (2020). https://doi.org/10.1134/S1063776120100076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120100076

Navigation