Skip to main content
Log in

An Integrated Mass Balance Approach for Assessing Hydrocarbon Resources in a Liquid-Rich Shale Resource Play: An Example from Upper Devonian Duvernay Formation, Western Canada Sedimentary Basin

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Petroleum resource assessment using reservoir volumetric approach relies on porosity and oil/gas saturation characterization by laboratory tests. In liquid-rich resource plays, the pore fluids are subject to phase changes and mass loss when a drilled core is brought to the surface due to volume expansion and evaporation. Further, these two closely related volumetric parameters are usually estimated separately with gas saturation inferred by compositional complementary law, resulting in a distorted gas to oil ratio under the circumstances of liquid hydrocarbon loss from sample. When applied to liquid-rich shale resource play, this can lead to overall under-estimation of resource volume, distorted gas and oil ratio (GOR), and understated resource heterogeneity in the shale reservoir. This article proposes an integrated mass balance approach for resource calculation in liquid-rich shale plays. The proposed method integrates bulk rock geochemical data with production and reservoir parameters to overcome the problems associated with laboratory characterization of the volumetric parameters by restoring the gaseous and light hydrocarbon loss due to volume expansion and evaporation in the sample. The method is applied to a Duvernay production well (14-16-62-21W5) in the Western Canada Sedimentary Basin (WCSB) to demonstrate its use in resource evaluation for a liquid-rich play. The results show that (a) by considering the phase behavior of reservoir fluids, the proposed method can be used to infer the quantity of the lost gaseous and light hydrocarbons; (b) by taking into account the lost gaseous and light hydrocarbons, the method generates an unbiased and representative resource potential; and (c) using the corrected oil and gas mass for the analyzed samples, the method produces a GOR estimate close to compositional characteristics of the produced hydrocarbons from initial production in 14-16-62-21W5 well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References Cited

  • AER, 2016. Duvernay Reserves and Resources Report, A Comprehensive Analysis of Alberta’s Foremost Liquids-Rich Shale Resource. https://www.aer.ca/documents/reports/DuvernayReserves_2016.pdf

  • Akkutlu, I. Y., Baek, S., Olorode, O. M., et al., 2017. Shale Resource Assessment in Presence of Nanopore Confinement. Unconventional Resources Technology Conference, SPE/AAPG/SEG Unconventional Resources Technology Conference, URTEC-2670808-MS, July 24–26, 2017, Austin, Texas, USA. https://doi.org/10.15530/urtec-2017-2670808

  • Akkutlu, I. Y., Fathi, E., (2012. Multiscale Gas Transport in Shales with Local Kerogen Heterogeneities. SPE Journal, 17(4): 1002–1011. https://doi.org/10.2118/146422-pa

    Article  Google Scholar 

  • Baek, S., Akkutlu, I. Y., 2019. Produced-Fluid Composition Redistribution in Source Rocks for Hydrocarbon-in-Place and Thermodynamic Recovery Calculations. SPE Journal, 24(3): 1395–1414. https://doi.org/10.2118/195578-pa

    Article  Google Scholar 

  • Beaton, A. P., Pawlowicz, J. G., Anderson, S. D. A., et al., 2010. Rock Eval, Total Organic Carbon and Adsorption Isotherms of the Duvernay and Muskwa Formations in Alberta: Shale Gas Data Release. Energy Resources Conservation Board, Alberta Geological Survey, Open File Report 2010–04, Edmonton, AB, Canada. 39

  • Bohacs, K. M., Passey, Q. R., Rudnicki, M., et al., 2013. The Spectrum of Fine-Grained Reservoirs from “Shale Gas” to “Shale Oil”/Tight Liquids: Essential Attributes, Key Controls, Practical Characterization. IPTC 2013: International Petroleum Technology Conference, March 26, 2013, IPTC-16676. 1–16

  • Chen, Z., Jiang, C., 2016. A Revised Method for Organic Porosity Estimation in Shale Reservoirs Using Rock-Eval Data: Example from Duvernay Formation in the Western Canada Sedimentary Basin. AAPG Bulletin, 100(3): 405–422. https://doi.org/10.1306/08261514173

    Article  Google Scholar 

  • Chen, Z., Lavoie, D., Malo, M., et al., 2017. A Dual-Porosity Model for Evaluating Petroleum Resource Potential in Unconventional Tight-Shale Plays with Application to Utica Shale, Quebec (Canada). Marine and Petroleum Geology, 80: 333–348. https://doi.org/10.1016/j.marpetgeo.2016.12.011

    Article  Google Scholar 

  • Chen, Z., Li, M. W., Ma, X. X., et al., 2018. Generation Kinetics Based Method for Correcting Effects of Migrated Oil on Rock-Eval Data—An Example from the Eocene Qianjiang Formation, Jianghan Basin, China. International Journal of Coal Geology, 195: 84–101. https://doi.org/10.1016/j.coal.2018.05.010

    Article  Google Scholar 

  • Chen, Z. H., Li, M. W., Jiang, C. Q., et al., 2019. Shale Oil Resource Potential and Mobility Assessment: A Case Study of Upper Devonian Duvernay Shale in the Western Canada Sedimentary Basin. Oil & Gas Geology, 40(6): 459–468 (in Chinese with English Abstract)

    Google Scholar 

  • Creaney, S., Allan, J., Cole, K. S., et al., 1994. Petroleum Generation and Migration in the Western Canada Sedimentary Basin. In: Mossop, G. D., Shetsen, I., eds., Geological Atlas of the Western Canada Sedimentary Basin. Canadian Society of Petroleum Geologists and Alberta Research Council. [2019-6-24]. http://www.ags.gov.ab.ca/publications/wcsb_atlas/atlas.html

  • Dong, T., Harris, N. B., McMillan, J. M., et al., 2019. A Model for Porosity Evolution in Shale Reservoirs: An Example from the Upper Devonian Duvernay Formation, Western Canada Sedimentary Basin. AAPG Bulletin, 103(5): 1017–1044. https://doi.org/10.1306/10261817272

    Article  Google Scholar 

  • Euzen, T., 2011. Shale Gas—An Overview. Technique Report. IFP Technologies (Canada) Inc., Calgary, Canada. https://doi.org/10.13140/RG.2.1.2236.6242

    Google Scholar 

  • Fowler, M. G., Stasiuk, L. D., Hearn, M., et al., 2001. Devonian Hydrocarbon Source Rocks and Their Derived Oils in the Western Canada Sedimentary Basin. Bulletin of Canadian Petroleum Geology, 49(1): 117–148. https://doi.org/10.2113/49.1.117

    Article  Google Scholar 

  • GRI, 1996. GRI-95/0496: Development of Laboratory and Petrophysical Techniques for Evaluating Shale Reservoirs. Gas Research Institute, Chicago. 304

    Google Scholar 

  • Jarvie, D. M., 2012. Shale Resource Systems for Oil and Gas: Part 2—Shale-Oil Resource Systems. In: Breyer, J. A., ed., Shale Reservoirs—Giant Resources for the 21st Century. AAPG Memoir, 97: 89–119

    Google Scholar 

  • Jarvie, D. M., 2014. Components and Processes Affecting Producibility and Commerciality of Shale Resource Systems. Geologica Acta, 12(12): 307–325. https://doi.org/10.1344/geologicaacta2014.12.4.3

    Google Scholar 

  • Jiang, C., Chen, Z., Mort, A., et al., 2016a. Hydrocarbon Evaporative Loss from Shale Core Samples as Revealed by Rock-Eval and Thermal Desorption-Gas Chromatography Analysis: Its Geochemical and Geological Implications. Marine and Petroleum Geology, 70: 294–303. https://doi.org/10.1016/j.marpetgeo.2015.11.021

    Article  Google Scholar 

  • Jiang, C., Obermajer, M., Chen, Z., 2016b. Rock-Eval/TOC Analysis of Selected Core Samples of the Devonian Duvernay Formation from the Western Canada Sedimentary Basin, Alberta. Geological Survey of Canada, Open File 8155. 532. https://doi.org/10.4095/299332

  • King, R. R., 2015. PS Modified Method and Interpretation of Source Rock Pyrolysis for an Unconventional World. American Association of Petroleum Geologists Bulletin Search and Discovery Article #41704. http://www.searchanddiscovery.com/documents/2015/41704king/ndx_king.pdf

  • Leythaeuser, D., Mackenzie, A, Scharfer, R., et al., 1984. A Novel Approach for Recognition and Quantification of Hydrocarbon Migration Effects in Shale-Sandstone Sequences. AAPG Bulletin, 68: 196–219

    Google Scholar 

  • Li, M. W., Chen, Z. H., Ma, X. X., et al., 2019. Shale Oil Resource Potential and Oil Mobility Characteristics of the Eocene-Oligocene Shahejie Formation, Jiyang Super-Depression, Bohai Bay Basin of China. International Journal of Coal Geology, 204: 130–143. https://doi.org/10.1016/j.coal.2019.01.013

    Article  Google Scholar 

  • Li, M. W., Chen, Z. H., Qian, M. H., et al., 2020. What are in Pyrolysis S1 Peak and what are Missed? Petroleum Compositional Characteristics Revealed from Programed Pyrolysis and Implications for Shale Oil Mobility and Resource Potential. International Journal of Coal Geology, 217: 103321. https://doi.org/10.1016/j.coal.2019.103321

    Article  Google Scholar 

  • Lyster, S., Corlett, H. J., Berhane, H., 2017. Hydrocarbon Resource Potential of the Duvernay Formation in Alberta. Alberta Energy Regulator, AER/AGS Open File Report 2017-02. 44

  • Macedo, R., 2013. Duvernay Well Encouraging for Encana. Daily Oil Bulletin, (2013-4-24) [2016-1-18]. www.dailyoilbulletin.com/headlines/2013-04-24/#axzz3xdfddAum

  • Michael, G. E., Packwood, J., Holba, A., 2013. Determination of in-situ Hydrocarbon Volumes in Liquid Rich Shale Plays. In: Unconventional Resources Technology Conference, August, 2013, Denver, Colorado, USA. www.searchanddiscovery.com/pdfz/documents/2014/80365michael/ndx_michael.pdf.html

  • Modica, C. J., Lapierre, S. G., 2012. Estimation of Kerogen Porosity in Source Rocks as a Function of Thermal Transformation: Example from the Mowry Shale in the Powder River Basin of Wyoming. AAPG Bulletin, 96(1): 87–108. https://doi.org/10.1306/04111110201

    Article  Google Scholar 

  • Passey, Q. R., Bohacs, K. M., Esch, W. L., et al., 2010. From Oil-Prone Source Rock to Gas-Producing Shale Reservoir—Geologic and Petrophysical Characterization of Unconventional Shale-Gas Reservoirs. International Oil and Gas Conference and Exhibition, June 8–10, 2010, Beijing. SPE-131350_MS

  • Rezaveisi, M., Javadpour, F., Sepehrnoori, K., 2014. Modeling Chromatographic Separation of Produced Gas in Shale Wells. International Journal of Coal Geology, 121: 110–122. https://doi.org/10.1016/j.coal.2013.11.005

    Article  Google Scholar 

  • Torsæter, O., Abtahi, M., 2000. Experimental Reservoir Engineering Laboratory Work Book. Department of Petroleum Engineering and Applied Geophysics, Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  • Wang, P. W., Chen, Z. H., Jin, Z. J., et al., 2018. Shale Oil and Gas Resources in Organic Pores of the Devonian Duvernay Shale, Western Canada Sedimentary Basin Based on Petroleum System Modeling. Journal of Natural Gas Science and Engineering, 50: 33–42. https://doi.org/10.1016/j.jngse.2017.10.027

    Article  Google Scholar 

  • Whitson, C. H., Sunjerga, S., 2012. PVT in Liquid-Rich Shale Reservoirs. SPE Annual Technical Conference and Exhibition, October 8–10, 2012, San Antonio, Texas, USA. SPE-155499-MS

  • Yu, W., Sepehrnoori, K., Patzek, T. W., 2016. Modeling Gas Adsorption in Marcellus Shale with Langmuir and BET Isotherms. SPE Journal, 21(2): 589–600. https://doi.org/10.2118/170801-pa

    Article  Google Scholar 

Download references

Acknowledgments

This study is an output from Geoscience for New Energy Supply Program of the Natural Resources Canada. The authors are grateful to Yoho Energy Ltd. for providing all data collected from 14-16-62-21W5 well. We thank Dr. Maowen Li of Sinopec and two anonymous reviewers for their helpful comments and suggestions. Our internal reviewer, Dr. Andy Mort of Geological Survey of Canada, is thanked for his helpful and constructive comments. This is NRCan contribution (No. 20200522). The final publication is available at Springer via https://doi.org/10.1007/s12583-020-1088-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoheng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Jiang, C. An Integrated Mass Balance Approach for Assessing Hydrocarbon Resources in a Liquid-Rich Shale Resource Play: An Example from Upper Devonian Duvernay Formation, Western Canada Sedimentary Basin. J. Earth Sci. 31, 1259–1272 (2020). https://doi.org/10.1007/s12583-020-1088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-020-1088-1

Key Words

Navigation