Skip to main content
Log in

Reversible Mechanochemistry Enabled Autonomous Sustaining of Robustness of Polymers—An Example of Next Generation Self-healing Strategy

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Even under low external force, a few macromolecules of a polymer have to be much more highly stressed and fractured first due to the inherent heterogeneous microstructure. When the materials keep on working under loading, as is often the case, the minor damages would add up, endangering the safety of use. Here we show an innovative solution based on mechanochemically initiated reversible cascading variation of metal-ligand complexations. Upon loading, crosslinking density of the proof-of-concept metallopolymer networks autonomously increases, and recovers after unloading. Meanwhile, the stress-induced tiny fracture precursors are blocked to grow and then restored. The entire processes reversibly proceed free of manual intervention and catalyst. The proposed molecular-level internal equilibrium prevention mechanisms fundamentally enhance durability of polymers in service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797.

    Article  CAS  Google Scholar 

  2. Chen, X. X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295, 1698–1702.

    Article  CAS  Google Scholar 

  3. Chen, X. X.; Zhong, Q. Y.; Wang, S. J.; Wu, Y. S.; Tan, J. D.; Lei, H. X.; Huang, S. Y.; Zhang, Y. F. Progress in dynamic covalent polymers. Acta Polymerica Sinica (in Chinese) 2019, 50, 469–484.

    Google Scholar 

  4. Yin, Q. Y.; Dai, C. H.; Chen, H.; Gou, K.; Guan, H. Z.; Wang, P. H.; Jiang, J. T.; Weng, G. S. Tough double metal-ion cross-linked elastomers with temperature-adaptable self-healing and luminescence properties. Chinese J. Polym. Sci. 2021, DOI: https://doi.org/10.1007/s10118-021-2517-z.

  5. Paulusse, J. M. J.; Sijbesma, R. P. Reversible mechanochemistry of a Pd(II) coordination polymer. Angew. Chem. Int. Ed. 2004, 43, 4460–4462.

    Article  CAS  Google Scholar 

  6. Kersey, F. R.; Loveless, D. M.; Craig, S. L. A hybrid polymer gel with controlled rates of cross-link rupture and self-repair. J. R. Soc. Interface 2007, 4, 373–380.

    Article  CAS  Google Scholar 

  7. Piermattei, A.; Karthikeyan, S.; Sijbesma, R. P. Activating catalysts with mechanical force. Nat. Chem. 2009, 1, 133–137.

    Article  CAS  Google Scholar 

  8. Balkenende, D. W. R.; Coulibaly, S.; Balog, S.; Simon, Y. C.; Fiore, G. L.; Weder, C. Mechanochemistry with metallosupramolecular polymers. J. Am. Chem. Soc. 2014, 136, 10493–10498.

    Article  CAS  Google Scholar 

  9. Das, M.; Pal, S.; Naskar, K. Exploring various metal-ligand coordination bond formation in elastomers: mechanical performance and self-healing behavior. Express Polym. Lett. 2020, 14, 860–880.

    Article  CAS  Google Scholar 

  10. Wilker, J. J. Marine bioinorganic materials: mussels pumping iron. Curr. Opin. Chem. Biol. 2010, 14, 276–283.

    Article  CAS  Google Scholar 

  11. Harrington, M. J.; Masic, A.; Holten-Andersen, N.; Waite, J. H.; Fratzl, P. Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 2010, 328, 216–220.

    Article  CAS  Google Scholar 

  12. Zeng, H.; Hwang, D. S.; Israelachvili, J. N.; Waite, J. H. Strong reversible Fe3+-mediated bridging between DOPA-containing protein films in water. Proc. Natl. Acad. Sci. 2010, 107, 12850–12853.

    Article  CAS  Google Scholar 

  13. Waite, J. H.; Qin, X. X.; Coyne, K. J. The peculiar collagens of mussel byssus. J. Matrix Biol. 1998, 17, 93–106.

    Article  CAS  Google Scholar 

  14. Krauss, S.; Metzger, T. H.; Fratzl, P.; Harrington, M. J. Self-repair of a biological fiber guided by an ordered elastic framework. Biomacromolecules 2013, 14, 1520–1528.

    Article  CAS  Google Scholar 

  15. Dzhardimalieva, G. I.; Yadav, B. C.; Singh S.; Uflyand, I. E. Self-healing and shape memory metallopolymers: state-of-the-art and future perspectives. Dalton Trans. 2020, 49, 3042–3087.

    Article  CAS  Google Scholar 

  16. Zechel, S.; Hager, M. D.; Priemel, T.; Harrington, M. J. Healing through histidine: bioinspired pathways to self-healing polymers via imidazole-metal coordination. Biomimetics 2019, 4, 20.

    Article  CAS  Google Scholar 

  17. Enke, M.; Bode, S.; Vitz, J.; Schacher, F. H.; Harrington, M. J.; Hager, M. D.; Schubert, U. S. Self-healing response in supramolecular polymers based on reversible zinc-histidine interactions. Polymer 2015, 69, 274–282.

    Article  CAS  Google Scholar 

  18. Andersen, A.; Chen, Y.; Birkedal, H. Bioinspired metal-polyphenol materials: self-healing and beyond. Biomimetics 2019, 4, 30.

    Article  CAS  Google Scholar 

  19. Tunn, I.; Harrington, M. J.; Blank, K. G. Bioinspired histidine-Zn2+ coordination for tuning the mechanical properties of self-healing coiled coil cross-linked hydrogels. Biomimetics 2019, 4, 25.

    Article  CAS  Google Scholar 

  20. Filippidi, E.; Cristiani, T. R.; Eisenbach, C. D.; Waite, J. H.; Israelachvili, J. N.; Ahn, K.; Valentine, M. T. Toughening elastomers using mussel-inspired iron-catechol complexes. Science 2017, 358, 502–505.

    Article  CAS  Google Scholar 

  21. Mozhdehi, D.; Neal, J. A.; Grindy, S. C.; Cordeau, Y.; Ayala, S.; Holten-Andersen, N.; Guan, Z. Tuning dynamic mechanical response in metallopolymer networks through simultaneous control of structural and temporal properties of the networks. Macromolecules 2016, 49, 6310–6321.

    Article  CAS  Google Scholar 

  22. Grindy, S. C.; Learsch, R.; Mozhdehi, D.; Cheng, J.; Barrett, D. G.; Guan, Z.; Messersmith, P. B.; Holten-Andersen, N. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat. Mater. 2015, 14, 1210–1216.

    Article  CAS  Google Scholar 

  23. Wang, J.; Liu, C.; Lu, X.; Yin, M. Co-polypeptides of 3,4-dihydroxyphenylalanine and L-lysine to mimic marine adhesive protein. Biomaterials 2007, 28, 3456–3468.

    Article  CAS  Google Scholar 

  24. Fullenkamp, D. E.; He, L.; Barrett, D. G.; Burghardt, W. R.; Messersmith, P. B. Mussel-inspired histidine-based transient network metal coordination hydrogels. Macromolecules 2013, 46, 1167–1174.

    Article  CAS  Google Scholar 

  25. Andersson, M.; Hedin, J.; Johansson, P.; Nordström, J.; Nydén, M. Coordination of imidazoles by Cu(II) and Zn(II) as studied by NMR relaxometry, EPR, far-FTIR vibrational spectroscopy and Ab initio calculations: effect of methyl substitution. J. Phys. Chem. A 2010, 114, 13146–13153.

    Article  CAS  Google Scholar 

  26. Schmidt, S.; Reinecke, A.; Wojcik, F.; Pussak, D.; Hartmann, L.; Harrington, M. J. Metal-mediated molecular self-healing in histidine-rich mussel peptides. Biomacromolecules 2014, 15, 1644–1652.

    Article  CAS  Google Scholar 

  27. Li, Y.; Wen, J.; Qin, M.; Cao, Y.; Ma, H.; Wang, W. Single-molecule mechanics of catechol-iron coordination bonds. ACS Biomater. Sci. Eng. 2017, 3, 979–989.

    Article  CAS  Google Scholar 

  28. Yang, B.; Lim, C.; Hwang, D. S.; Cha, H. J. Switch of surface adhesion to cohesion by dopa-Fe3+ complexation in response to microenvironment at the mussel plaque/substrate interface. Chem. Mater. 2016, 28, 7982–7989.

    Article  CAS  Google Scholar 

  29. Xu, Z. P. Mechanics of metal-catecholate complexes: the role of coordination state and metal types. Sci. Rep. 2013, 3, 2914–2920.

    Article  Google Scholar 

  30. Mozhdehi, D.; Ayala, S.; Cromwell, O. R.; Guan, Z. Self-healing multiphase polymers via dynamic metal-ligand interactions. J. Am. Chem. Soc. 2014, 136, 16128–16131.

    Article  CAS  Google Scholar 

  31. Enke, M.; Jehle, F.; Bode, S.; Vitz, J.; Harrington, M. J.; Hager, M. D.; Schubert, U. S. Histidine-zinc interactions investigated by isothermal titration calorimetry (ITC) and their application in self-healing polymers. Macromol. Chem. Phys. 2017, 218, 1600458.

    Article  Google Scholar 

  32. Enke, M.; Bose, R. K.; Zechel, S.; Vitz, J.; Deubler, R.; Garcia, S. J.; Zwaag, S. V.; Schacher, F. H.; Hager, M. D.; Schubert, U. S. A translation of the structure of mussel byssal threads into synthetic materials by the utilization of histidine-rich block copolymers. Polym. Chem. 2018, 9, 3543–3551.

    Article  CAS  Google Scholar 

  33. Harrington, M. J.; Gupta, H. S.; Fratzl, P.; Waite, J. H. Collagen insulated from tensile damage by domains that unfold reversibly: in situ X-ray investigation of mechanical yield and damage repair in the mussel byssus. J. Struct. Biol. 2009, 167, 47–54.

    Article  CAS  Google Scholar 

  34. Tang, J. D.; Li, J. Y.; Vlassak, J. J.; Suo, Z. G. Fatigue fracture of hydrogels. Extreme Mech. Lett. 2017, 10, 24–31.

    Article  Google Scholar 

  35. Xia, N. N.; Xiong, X. M.; Wang, J.; Rong, M. Z.; Zhang, M. Q. A seawater triggered dynamic coordinate bond and its application for underwater self-healing and reclaiming of lipophilic polymer. Chem. Sci. 2016, 7, 2736–2742.

    Article  CAS  Google Scholar 

  36. Zhu, D. Y.; Chen, X. J.; Hong, Z. P.; Zhang, L. Y.; Zhang, L.; Guo, J. W.; Rong, M. Z.; Zhang, M. Q. Repeatedly intrinsic self-healing of millimeter-scale wounds in polymer through rapid volume expansion aided host-guest interaction. ACS Appl. Mater. Interfaces 2020, 12, 22534–22542.

    Article  CAS  Google Scholar 

  37. Xia, N. N.; Rong, M. Z.; Zhang, M. Q.; Kuo, S. W. Stress intensification—an abnormal phenomenon observed during stress relaxation of dynamic coordination polymer. Express Polym. Lett. 2016, 10, 742–749.

    Article  CAS  Google Scholar 

  38. Lei, Y. F.; Shan, S. J.; Lin Y. L.; Zhang, A. Q. Network reconfiguration and unusual stress intensification of a dynamic reversible polyimine elastomer. Polymer 2020, 186, 122031.

    Article  CAS  Google Scholar 

  39. Fortman, D. J.; Brutman, J. P.; Cramer, C. J.; Hillmyer, M. A.; Dichtel, W. R. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. J. Am. Chem. Soc. 2015, 137, 14019–14022.

    Article  CAS  Google Scholar 

  40. Liu, C.; Lafdi, K.; Chinesta, F. Durability sensor using low concentration carbon nano additives. Compos. Sci. Technol. 2020, 195, 108200.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52033011, 51773229 and 51873235).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min-Zhi Rong or Ming-Qiu Zhang.

Electronic Supplementary Information

10118_2021_2532_MOESM1_ESM.pdf

Reversible Mechanochemistry Enabled Autonomous Sustaining of Robustness of Polymers—An Example of Next Generation Self-healing Strategy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MX., Rong, MZ. & Zhang, MQ. Reversible Mechanochemistry Enabled Autonomous Sustaining of Robustness of Polymers—An Example of Next Generation Self-healing Strategy. Chin J Polym Sci 39, 545–553 (2021). https://doi.org/10.1007/s10118-021-2532-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2532-0

Keywords

Navigation