Skip to main content
Log in

Solutions in the Discrete Fractional Forms of Two Differential Equations with Singular Points

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In present note, we apply the Leibniz formula with the nabla operator in discrete fractional calculus (DFC) due to obtain the discrete fractional solutions of a class of associated Bessel equations (ABEs) and a class of associated Legendre equations (ALEs), respectively. Thus, we exhibit a new solution method for such second order linear ordinary differential equations with singular points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acar, N., Atici, F.M. Exponential functions of discrete fractional calculus. Anal. Discrete Math., 7: 343–353 (2013)

    Article  MathSciNet  Google Scholar 

  2. Atici F.M., Eloe, P.W. A transform method in discrete fractional calculus. Int. J. Differ. Equ., 2: 165–176 (2007)

    MathSciNet  Google Scholar 

  3. Banerji, P.K., Loonker, D. Dual integral equations involving Legendre functions in distribution spaces. J. Inequal. Spec. Funct., 1(1): 53–60 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Bas, E., Yilmazer, R., Panakhov, E. Fractional solutions of Bessel equation with N-method. Sci. World J., 2013: 685695 (2013)

    Article  Google Scholar 

  5. Cochrane, T. Small solutions of the Legendre equation. J. Number Theory, 70: 62–66 (1998)

    Article  MathSciNet  Google Scholar 

  6. Lin, S.-D., Ling, W.-C., Nishimoto, K., Srivastava, H.M. A simple fractional-calculus approach to the solutions of the Bessel difeerential equation of general order and some of its applications. Comput. Math. Appl., 49: 1487–1498 (2005)

    Article  MathSciNet  Google Scholar 

  7. Lin, S.-D., Tsai, Y.-S., Wang, P.-Y. Explicit solutions of a certain class of associated Legendre equations by means of fractional calculus. Appl. Math. Comput., 187: 280–289 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Mandal, N., Mandal, B.N. On some dual integral equations involving Legendre and associated Legendre functions. J. Indian Inst. Sci., 73: 565–578 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Mohan, J.J., Deekshitulu, G.V.S.R. Solutions of fractional difference equations using S-transforms. Malaya J. Mat., 3: 7–13 (2013)

    MATH  Google Scholar 

  10. Mohan, J.J. Solutions of perturbed nonlinear nabla fractional difference equations. Novi Sad J. Math., 43: 125–138 (2013)

    MathSciNet  Google Scholar 

  11. Okrasiński, W., Płociniczak, L. A note on fractional Bessel equation and its asymptotics. Fract. Calc. Appl. Anal., 16(3): 559–572 (2013)

    Article  MathSciNet  Google Scholar 

  12. Ozturk, O. A study on nabla discrete fractional operator in mass-spring-damper system. New Trends Math. Sci., 4(4): 137–144 (2016)

    Article  Google Scholar 

  13. Ozturk, O., Yilmazer, R. Solutions of the radial component of the fractional Schrödinger equation using N-fractional calculus operator. Differ. Equ. Dyn. Syst., 28: 191–199 (2020)

    Article  MathSciNet  Google Scholar 

  14. Robin, W. Ladder-operator factorization and the Bessel differential equations. Math. Forum, 9(2): 71–80 (2014)

    Article  MathSciNet  Google Scholar 

  15. Samaddar, S.N. Some integrals involving associated Legendre functions. Math. Comp., 28(125): 257–263 (1974)

    Article  MathSciNet  Google Scholar 

  16. Segura, J., Gil, A. Evaluation of associated Legendre functions off the cut and parabolic cylinder functions. Electron. Trans. Numer. Anal., 9: 137–146 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Yang, X.-J., Srivastava, H.M., Machado, J.A.T. A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow. Therm. Sci., 20(2): 753–756 (2016)

    Article  Google Scholar 

  18. Yang, X.-J. Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat transfer problems. Therm. Sci., 21(3): 1161–1171 (2017)

    Article  Google Scholar 

  19. Yang, X.-J., Machado, J.A.T., Baleanu, D. Anomalous diffusion models with general fractional derivatives within the kernels of the extended Mittag-Leffler type functions. Rom. Rep. Phys., 69(4): 1–20 (2017)

    Google Scholar 

  20. Yang, X.-J., Machado, J.A.T. A new fractional operator of variable order: Application in the description of anomalous diffusion. Physica A, 481: 276–283 (2017)

    Article  MathSciNet  Google Scholar 

  21. Yilmazer, R., Ozturk, O. N-fractional calculus operator Nη method applied to a Gegenbauer differential equation. Cankaya Univ. J. Sci. Eng., 9(1): 37–48 (2012)

    Google Scholar 

Download references

Acknowledgments

The author would like to thank all the referees and publishers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okkes Ozturk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, O. Solutions in the Discrete Fractional Forms of Two Differential Equations with Singular Points. Acta Math. Appl. Sin. Engl. Ser. 36, 975–981 (2020). https://doi.org/10.1007/s10255-020-0954-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-020-0954-z

Keywords

2000 MR Subject Classification

Navigation