Skip to main content
Log in

Quantile Regression under Local Misspecification

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

The frequentist model averaging (FMA) and the focus information criterion (FIC) under a local framework have been extensively studied in the likelihood and regression setting since the seminal work of Hjort and Claeskens in 2003. One inconvenience, however, of the existing works is that they usually require the involved criterion function to be twice differentiable which thus prevents a direct application to the case of quantile regression (QR). This as well as some other intrinsic merits of QR motivate us to study the FIC and FMA in a locally misspecified linear QR model. Specifically, we derive in this paper the explicit asymptotic risk expression for a general submodel-based QR estimator of a focus parameter. Then based on this asymptotic result, we develop the FIC and FMA in the current setting. Our theoretical development depends crucially on the convexity of the objective function, which makes possible to establish the asymptotics based on the existing convex stochastic process theory. Simulation studies are presented to illustrate the finite sample performance of the proposed method. The low birth weight data set is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akaike, H. Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (Edited by B. N. Petrov and F. Csaki), 267–281, Akademiai Kiado, Budapest, 1973

    Google Scholar 

  2. Angrist, J., Chernozhukov, V., Fernandez-Val, I. Quantile regression under misspecification, with an application to the U.S. wage structure. Econometrica, 74: 539–563 (2006)

    Article  MathSciNet  Google Scholar 

  3. Breiman, L. Better subset regression using the nonnegative garrote. Technometrics, 74: 373–384 (1995)

    Article  MathSciNet  Google Scholar 

  4. Buckland, S.T., Burnham, K.P., Augustin, N.H. Model selection: an integral part of inference. Biometrics, 53: 603–618 (1997)

    Article  Google Scholar 

  5. Burnham, K.P., Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information Theoretic Approach, 2nd edition. Springer, New York, 2002

    MATH  Google Scholar 

  6. Claeskens, G., Hjort, N.L. The focused information criterion (with discussions). J. Amer. Statist. Assoc., 98: 900–916 (2003)

    Article  MathSciNet  Google Scholar 

  7. Claeskens, G., Hjort, N.L. Model Selection and Model Averaging. Cambridge University Press, New York, 2008

    MATH  Google Scholar 

  8. Claeskens, G., Carroll, R.J. An asymptotic theory for model selection inference in general semiparametric problems. Biometrika, 94: 249–265 (2007)

    Article  MathSciNet  Google Scholar 

  9. Fan, J., Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc., 96: 1348–1360 (2001)

    Article  MathSciNet  Google Scholar 

  10. Fan, J.Q., Lv, J.C. A selective overview of variable selection in high dimensional feature space. Statistica Sinica, (invited submission), 20: 101–148 (2010)

    MathSciNet  MATH  Google Scholar 

  11. He, X.M., Zhu, L.X. A lack-of-fit test for quantile regression. J. Amer. Statist. Assoc., 98: 1013–1022 (2003)

    Article  MathSciNet  Google Scholar 

  12. Hosmer, D.W., Lemeshow, S. Applied Logistic Regression. Wiley, New York, 1989

    MATH  Google Scholar 

  13. Hjort, N.L., Claeskens, G. Frequentist model average estimators (with discussions). J. Amer. Statist. Assoc., 98: 879–899 (2003)

    Article  MathSciNet  Google Scholar 

  14. Hjort, N.L., Claeskens, G. Focussed information criteria and model averaging for Cox’s hazard regression model. J. Amer. Statist. Assoc., 101: 1449–1464 (2006)

    Article  MathSciNet  Google Scholar 

  15. Hjort, N.L., Pollard, D. Asymptotics for minimisers of convex processes. Statistical research report, University of Oslo, Dept. of Mathematics, 1993

  16. Jason, A. The effects of demographics and maternal behavior on the distribution of birth outcomes. Empirical Economics, 26: 247–257 (2001)

    Article  Google Scholar 

  17. Kim, T.H., White, H. Estimation, inference, and specification testing for possibly misspecified quantile regressions. In: Maximum Likelihood Estimation of Misspecified Models: Twenty Years Later (edited by Fomby, T. and Hill, R.C.), 107–132. Elsevier, New York, 2003

    Chapter  Google Scholar 

  18. Knight, K. Limiting distributions for l1 regression estimators under general conditions. Ann. Statist., 26: 755–770 (1998)

    Article  MathSciNet  Google Scholar 

  19. Koenker, R., Bassett, G. Regression quantiles. Econometrica, 46: 33–50 (1978)

    Article  MathSciNet  Google Scholar 

  20. Koenker, R., Hailock, K.F. Quantile regression. Journal of Economic Perspectives, 15: 143–156 (2001)

    Article  Google Scholar 

  21. Koenker, R. Quantile Regression. Cambridge University Press, New York, 2005

    Book  Google Scholar 

  22. Konishi, S., Kitagawa, G. Information Criteria and Statistical Modeling. Springer, New York, 2008

    Book  Google Scholar 

  23. Lee, S. Efficient semiparametric estimation of a partially linear quantile regression model. Econometr. Theory, 19: 1–31 (2003)

    Article  MathSciNet  Google Scholar 

  24. Pollard, D. Asymptotics for least absolute deviation regression estimators. Econometr. Theory, 7: 186–199 (1991)

    Article  MathSciNet  Google Scholar 

  25. Schwarz, G.E. Estimating the dimension of a model. Ann. Statist., 6: 461–464 (1978)

    Article  MathSciNet  Google Scholar 

  26. Shen, X., Huang, H.C., Ye, J. Inference after model selection. J. Amer. Statist. Assoc., 99: 751–762 (2004)

    Article  MathSciNet  Google Scholar 

  27. Tibshirani, R. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B., 58: 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  28. Zou, H., Yuan, M. Composite quantile regression and the oracle model selection theory. Ann. Statist., 36: 1108–1126 (2008)

    Article  MathSciNet  Google Scholar 

  29. Zhang, X.Y., Liang, H. Focused information criterion and model averaging for generalized additive partial linear models. Ann. Statist., 39: 174–200 (2011)

    Article  MathSciNet  Google Scholar 

  30. van der Vaart, A.W. Asymptotic Statistics. Cambridge University Press, New York, 1998

    Book  Google Scholar 

Download references

Acknowledgments

The authors appreciate the associate editor and two referees for some useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-gang Duan.

Additional information

This paper is supported by the National Natural Science Foundation of China (No. 11771049).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Xg., Wang, Qh. Quantile Regression under Local Misspecification. Acta Math. Appl. Sin. Engl. Ser. 36, 790–802 (2020). https://doi.org/10.1007/s10255-020-0973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-020-0973-9

Keywords

2000 MR Subject Classification

Navigation