Skip to main content
Log in

SYNTHESIS OF MAGNETIC NANOCOMPOSITE FILMS SiCxNyFez BY PLASMA-ENHANCED CHEMICAL DECOMPOSITION OF A GASEOUS MIXTURE OF 1,1,1,3,3,3-HEXAMETHYLDISILAZANE, FERROCENE, AND HELIUM

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A novel method is developed for the preparation of magnetic composite films with a complex composition SiCxNyFez using radio frequency plasma-enhanced chemical vapor decomposition of a gaseous mixture of 1,1,1,3,3,3-hexamethyldisilazane [(CH3)3Si]2NH, ferrocene (C5H5)2Fe, and helium. The films of various compositions are deposited in the temperature region 373-873 K. The dependence of physicochemical and functional properties of SiCxNyFez films on the synthesis conditions is studied with a number of modern methods such as IR spectroscopy, Raman spectroscopy, EDS, XPS, powder XRD. The IR spectra exhibit the same system of bonds as that in silicon carbonitride films, while the Raman spectra contain modes D and G indicating a presence of an impurity disordered graphite phase. It is established by the Faraday method and by electron paramagnetic resonance (EPR) that SiCxNyFez films prepared at 573-873 K are magnetic. According to the XPS data, the SiCxNyFez films may contain α-Fe, FeSi, or β-FeSi2 phases with similar binding energies; as a result, the composition of these films is difficult to determine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. V. Sverdlov and S. Selberherr. Phys. Rep., 2015, 585, 1–40.

  2. J. Huran, A. Valovič, M. Kučera, A. Kleinová, E. Kováčová, P. Boháček, and M. Sekáčová. J. Electr. Eng., 2012, 63(5), 333–335.

  3. N. I. Fainer, M. L. Kosinova, Y. M. Rumyantsev, E. A. Maximovskii, and F. A. Kuznetsov. J. Phys. Chem. Solids, 2008, 69(2–3), 661–668.

  4. R. V. Pushkarev, N. I. Fainer, and K. K. Maurya. Superlattices Microstruct., 2017, 102, 119–126.

  5. R. V. Pushkarev, N. I. Fainer, A. N. Golubenko, Y. M. Rumyantsev, V. A. Nadolinnyi, E. A. Maksimovskii, E. V. Korotaev, and V. V. Kaichev. Glass Phys. Chem., 2016, 42(5), 649–657.

  6. X. H. Yan, X. N. Cheng, C. S. Li, R. Hauser, and R. Riedel. Mater. Sci. Forum, 2007, 546–549, 2269–2272.

  7. C. Zhou, L. Yang, H. Geng, Q. Zheng, H. Min, Z. Yu, and H. Xia. Ceram. Int., 2012, 38(8), 6815–6822.

  8. S. I. Andronenko, I. Stiharu, D. Menard, C. Lacroix, and S. K. Misra. Appl. Magn. Reson., 2010, 38(4), 385–402.

  9. R. Hauser, A. Francis, R. Theismann, and R. Riedel. J. Mater. Sci., 2008, 43(12), 4042–4049.

  10. L. Biasetto, A. Francis, P. Palade, G. Principi, and P. Colombo. J. Mater. Sci., 2008, 43(12), 4119–4126.

  11. R. Pushkarev, N. Fainer, V. Kirienko, A. Matsynin, V. Nadolinnyy, I. Merenkov, S. Trubina, S. Ehrenburg, and K. Kvashnina. J. Mater. Chem. C, 2019, 7(14), 4250–4258.

  12. J. H. Scofield. J. Electron Spectros. Relat. Phenom., 1976, 8(2), 129–137.

  13. S. Biniak, G. Trykowski, M. Walczyk, and M. Richert. J. Appl. Spectros., 2016, 83(4), 580–585.

  14. A. C. Ferrari and J. Robertson. Phys. Rev. B, 2000, 61(20), 14095—14107.

  15. A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. McIntyre. Surf. Interface Anal., 2004, 36(12), 1564–1574.

  16. N. Ohtsu, M. Oku, K. Satoh, and K. Wagatsuma. Appl. Surf. Sci., 2013, 264, 219–224.

  17. M. Descostes, F. Mercier, N. Thromat, C. Beaucaire, and M. Gautier-Soyer. Appl. Surf. Sci., 2020, 165, 288–302.

  18. A. Bachar, A. Bousquet, H. Mehdi, G. Monier, C. Robert-Goumet, L. Thomas, M. Belmahi, A. Goullet, T. Sauvage, and E. Tomasella. Appl. Surf. Sci., 2018, 444, 293–302.

  19. Z. W. Deng and R. Souda. Diam. Relat. Mater., 2002, 11(9), 1676–1682.

  20. V. R. Shayapov, Yu. M. Rumyantsev, N. I. Fainer, and B. M. Ayupov. J. Phys. Chem. A, 2012, 86(11), 1716–1720.

  21. T. J. Ohtsuka. J. Phys. Soc. Jpn., 1961, 16, 1549–1560.

  22. X. Ren, W. Zhang, Y. Zhang, P. Zhang, and J. Liu. Trans. Nonferrous Met. Soc. China, 2015, 25, 137–145.

  23. N. I. Fainer, R. V. Pushkarev, V. A. Shestakov, and A. K. Gutakovskii. J. Struct. Chem., 2017, 58(8), 1493–1502.

  24. S. I. Andronenko and S. K. Misra. Appl. Magn. Reson., 2015, 46(6), 693–707.

  25. V. N. Ikorskiy, A. S. Bogomyakov. Magnetokhimiya (Magnetochemistry) [in Russian]. Institute “International Tomographic Center SB RAS”: Novosibirsk, 2013.

  26. V. Klemm. Magnetokhimiya (Magnetochemistry) [in Russian]. Goskhimizdat: Moscow, 1939.

  27. JCPDS International Center for Diffraction Data. Card. no. 6–696.

  28. JCPDS International Center for Diffraction Data. Card. no. 85–1317.

  29. JCPDS International Center for Diffraction Data. Card. no. 38–1397.

  30. JCPDS International Center for Diffraction Data. Card. no. 35–822.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Fainer.

Ethics declarations

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fainer, N.I., Plekhanov, A.G., Pushkarev, R.V. et al. SYNTHESIS OF MAGNETIC NANOCOMPOSITE FILMS SiCxNyFez BY PLASMA-ENHANCED CHEMICAL DECOMPOSITION OF A GASEOUS MIXTURE OF 1,1,1,3,3,3-HEXAMETHYLDISILAZANE, FERROCENE, AND HELIUM. J Struct Chem 61, 1865–1875 (2020). https://doi.org/10.1134/S0022476620120045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620120045

Keywords

Navigation