1932

Abstract

Comprehending speech in our native language is an impressionistically effortless and routine task. We often give little consideration to its complexity. Only in particularly challenging situations (e.g., in noisy environments, when hearing significantly accented speech) do some of these intricacies become apparent. Higher-order knowledge constrains sensory perception and has been demonstrated to play a crucial role in other domains of human language processing. Moreover, incorporating measures of brain activity during online speech comprehension has just begun to highlight the extent to which top-down information flow and predictive processes are integral to sensory perception. This review argues that our phonological system, at a relatively abstract level, is one such source of higher-order knowledge. In particular, I discuss the extent to which phonological distinctive features play a role in perception and predictive processing during speech comprehension with reference to behavioral and neurophysiological data. This line of research represents a tractable linking of linguistic theory with models of perception and speech comprehension in the brain.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-linguistics-011817-045537
2018-01-14
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/linguistics/4/1/annurev-linguistics-011817-045537.html?itemId=/content/journals/10.1146/annurev-linguistics-011817-045537&mimeType=html&fmt=ahah

Literature Cited

  1. Altmann CF, Uesaki M, Ono K, Matsuhashi M, Mima T, Fukuyama H. 2014. Categorical speech perception during active discrimination of consonants and vowels. Neuropsychologia 64:13–23 [Google Scholar]
  2. Archangeli D. 1988. Aspects of underspecification theory. Phonology 5:183–207 [Google Scholar]
  3. Arnal LH, Giraud A-L. 2012. Cortical oscillations and sensory predictions. Trends Cogn. Sci 16:390–98 [Google Scholar]
  4. Arnal LH, Wyart V, Giraud A-L. 2011. Transitions in neural oscillations reflect prediction errors generated in audiovisual speech. Nat. Neurosci 14:797–801 [Google Scholar]
  5. Arsenault JS, Buchsbaum BR. 2015. Distributed neural representations of phonological features during speech perception. J. Neurosci. 35:634–42 [Google Scholar]
  6. Astikainen P, Lillstrang E, Ruusuvirta T. 2008. Visual mismatch negativity for changes in orientation—a sensory memory–dependent response. Euro. J. Neurosci. 28:2319–24 [Google Scholar]
  7. Atienza M, Cantero JL, Dominguez-Marin E. 2002. Mismatch negativity (MMN): an objective measure of sensory memory and long-lasting memories during sleep. Int. J. Psychophysiol. 46:215–25 [Google Scholar]
  8. Avery P, Rice K. 1989. Segment structure and coronal underspecification. Phonology 6:179–200 [Google Scholar]
  9. Bar M. 2007. The proactive brain: using analogies and associations to generate predictions. Trends Cogn. Sci. 11:280–89 [Google Scholar]
  10. Bar M. 2009a. Predictions: a universal principle in the operation of the human brain. Philos. Trans. R. Soc. B 364:1181–82 [Google Scholar]
  11. Bar M. 2009b. The proactive brain: memory for predictions. Philos. Trans. R. Soc. B 364:1235–43 [Google Scholar]
  12. Bar M, Kassam KS, Ghuman AS, Boshyan J, Schmidt AM. et al. 2006. Top-down facilitation of visual recognition. PNAS 103:449–54 [Google Scholar]
  13. Bastos AM, Vezoli J, Bosman CA, Schoffelen J-M, Oostenveld R. et al. 2015. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85:390–401 [Google Scholar]
  14. Beckman ME, Pierrehumbert J. 2004. Interpreting “phonetic interpretation” over the lexicon. Phonetic Interpretation: Papers in Laboratory Phonology VI J Local, R Ogden, R Temple 13–38 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  15. Berent I. 2013. The Phonological Mind Cambridge, UK: Cambridge Univ. Press
  16. Best CT, Strange W. 1992. Effects of phonological and phonetic factors on cross-language perception of approximants. J. Phon. 20:305–30 [Google Scholar]
  17. Bever TG, Poeppel D. 2010. Analysis by synthesis: a (re-)emerging program of research for language and vision. Biolinguistics 4:174–200 [Google Scholar]
  18. Blumstein SE, Stevens KN. 1979. Acoustic invariance in speech production: evidence from measurements of the spectral characteristics of stop consonants. J. Acoust. Soc. Am. 66:1001–17 [Google Scholar]
  19. Blumstein SE, Stevens KN. 1980. Perceptual invariance and onset spectra for stop consonants in different vowel environments. J. Acoust. Soc. Am. 67:648–62 [Google Scholar]
  20. Bonte M, Mitterer H, Zellagui N, Poelmans H, Blomert L. 2005. Auditory cortical tuning to statistical regularities in phonology. Clin. Neurophysiol. 116:2765–74 [Google Scholar]
  21. Brentari D. 2011. Sign language phonology. The Handbook of Phonological Theory JA Goldsmith, J Riggle, ACL Yu 691–721 Oxford, UK: Wiley-Blackwell, 2nd ed.. [Google Scholar]
  22. Browman CP, Goldstein L. 1989. Articulatory gestures as phonological units. Phonology 6:201–51 [Google Scholar]
  23. Buzsaki G. 2004. Neuronal oscillations in cortical networks. Science 304:1926–29 [Google Scholar]
  24. Carbonell KM, Lotto AJ. 2014. Speech is not special…again. Front. Psychol. 5:427 [Google Scholar]
  25. Chang EF, Rieger JW, Johnson K, Berger MS, Barbaro NM, Knight RT. 2010. Categorical speech representation in human superior temporal gyrus. Nat. Neurosci. 13:1428–32 [Google Scholar]
  26. Chomsky N, Halle M. 1968. The Sound Pattern of English Cambridge, MA: MIT Press
  27. Clements GN. 1985. The geometry of phonological features. Phonol. Yearb 2:225–52 [Google Scholar]
  28. Coleman J. 1998. Cognitive reality and the phonological lexicon: a review. J. Neurolinguist. 11:295–320 [Google Scholar]
  29. Coleman J. 2003. Discovering the acoustic correlates of phonological contrasts. J. Phon. 31:351–72 [Google Scholar]
  30. Cooper FS, Liberman AM, Delattre PC, Borst JM, Gerstman LJ. 1952. Some experiments on the perception of synthetic speech sounds. J. Acoust. Soc. Am. 24:597–606 [Google Scholar]
  31. Cornell SA, Lahiri A, Eulitz C. 2013. Inequality across consonantal contrasts in speech perception: evidence from mismatch negativity. J. Exp. Psychol. Hum. Percept. Perform. 39:757–72 [Google Scholar]
  32. Correia JM, Jansma BMB, Bonte M. 2015. Decoding articulatory features from fMRI responses in dorsal speech regions. J. Neurosci. 35:15015–25 [Google Scholar]
  33. Csépe V, Karmos G, Molnár M. 1987. Evoked-potential correlates of stimulus deviance during wakefulness and sleep in cat—animal model of mismatch negativity. Electroenceph. Clin. Neurophys. 66:571–78 [Google Scholar]
  34. Csépe V, Pallier C, Hoke M, Hampson S, Ross B. 1992. Evoked magnetic responses of the human auditory cortex to minor pitch changes: localization of the mismatch field. Electroenceph. Clin. Neurophys. 84:538–48 [Google Scholar]
  35. Dell GS, Juliano C, Govindjee A. 1993. Structure and content in language production: a theory of frame constraints in phonological speech errors. Cogn. Sci. 17:149–95 [Google Scholar]
  36. Diehl RL, Lotto AJ, Holt LL. 2004. Speech perception. Annu. Rev. Psychol. 55:149–79 [Google Scholar]
  37. Doelling KB, Arnal LH, Ghitza O, Poeppel D. 2014. Acoustic landmarks drive delta–theta oscillations to enable speech comprehension by facilitating perceptual parsing. NeuroImage 85:761–68 [Google Scholar]
  38. Dresher BE. 2015a. The arch not the stones: universal feature theory without universal features. Nordlyd 41:165–81 [Google Scholar]
  39. Dresher BE. 2015b. The motivation for contrastive feature hierarchies in phonology. Linguist. Var. 15:1–40 [Google Scholar]
  40. Dressler WU. 1984. Explaining natural phonology. Phonology 19:577–621 [Google Scholar]
  41. Eimas PD, Corbit JD. 1973. Selective adaptation of linguistic feature detectors. Cogn. Psychol. 4:99–109 [Google Scholar]
  42. Ettinger A, Linzen T, Marantz A. 2014. The role of morphology in phoneme prediction: evidence from MEG. Brain Lang 129:14–23 [Google Scholar]
  43. Eulitz C, Lahiri A. 2004. Neurobiological evidence for abstract phonological representations in the mental lexicon during speech recognition. J. Cogn. Neurosci. 16:577–83 [Google Scholar]
  44. Federmeier KD. 2007. Thinking ahead: the role and roots of prediction in language comprehension. Psychophysiology 44:491–505 [Google Scholar]
  45. Fischer C, Morlet D, Giard MH. 2000. Mismatch negativity and N100 in comatose patients. Audiol. Neurootol. 5:192–97 [Google Scholar]
  46. Flagg EJ, Oram Cardy JE, Roberts TPL. 2006. MEG detects neural consequences of anomalous nasalization in vowel–consonant pairs. Neurosci. Lett. 397:263–68 [Google Scholar]
  47. Fontolan L, Morillon B, Liegeois-Chauvel C. 2014. The contribution of frequency-specific activity to hierarchical information processing in the human auditory cortex. Nat. Commun. 5:4694 [Google Scholar]
  48. Fowler CA. 1996. Listeners do hear sounds, not tongues. J. Acoust. Soc. Am. 99:1730–41 [Google Scholar]
  49. Friston K. 2005. A theory of cortical responses. Philos. Trans. R. Soc. B 360:815–36 [Google Scholar]
  50. Gage NM, Poeppel D, Roberts TPL, Hickok GS. 1998. Auditory evoked M100 reflects onset acoustics of speech sounds. Brain Res 814:236–39 [Google Scholar]
  51. Galantucci B, Fowler CA, Turvey MT. 2006. The motor theory of speech perception reviewed. Psychon. Bull. Rev. 13:361–77 [Google Scholar]
  52. Gaskell MG, Marslen-Wilson WD. 1996. Phonological variation and inference in lexical access. J. Exp. Psychol. Hum. Percept. Perform. 22:144–58 [Google Scholar]
  53. Gay T. 1968. Effect of speaking rate on diphthong formant movements. J. Acoust. Soc. Am. 44:1570–73 [Google Scholar]
  54. Geschwind N. 1970. The organization of language and the brain. Science 170:940–44 [Google Scholar]
  55. Gick B, Derrick D. 2009. Aero-tactile integration in speech perception. Nature 462:502–4 [Google Scholar]
  56. Goldinger SD. 1996. Words and voices: episodic traces in spoken word identification and recognition memory. J. Exp. Psychol. Learn. Mem. Cogn. 22:1166–83 [Google Scholar]
  57. Goldinger SD, Azuma T. 2003. Puzzle-solving science: the quixotic quest for units in speech perception. J. Phon. 31:305–20 [Google Scholar]
  58. Gomes H, Ritter W, Vaughan HG. 1995. The nature of preattentive storage in the auditory system. J. Cogn. Neurosci. 7:81–94 [Google Scholar]
  59. Gow DW Jr.. 2003. Feature parsing: feature cue mapping in spoken word recognition. Atten. Percept. Psychophys. 65:575–90 [Google Scholar]
  60. Gow DW Jr., Im AM. 2004. A cross-linguistic examination of assimilation context effects. J. Mem. Lang. 51:279–96 [Google Scholar]
  61. Greenberg S. 1999. Speaking in shorthand—a syllable-centric perspective for understanding pronunciation variation. Speech Commun 29:159–76 [Google Scholar]
  62. Guenther FH, Vladusich T. 2012. A neural theory of speech acquisition and production. J. Neurolinguist. 25:408–22 [Google Scholar]
  63. Hagoort P, Hald L, Bastiaansen M, Petersson KM. 2004. Integration of word meaning and world knowledge in language comprehension. Science 304:438–41 [Google Scholar]
  64. Hale M, Reiss C. 2008. The Phonological Enterprise Oxford, UK: Oxford Univ. Press
  65. Halle M. 2002. From Memory to Speech and Back Berlin: de Gruyter
  66. Halle M, Clements GN. 1983. Problem Book in Phonology Cambridge, MA: MIT Press
  67. Halle M, Stevens KN. 1962. Speech recognition: a model and a program for research. IRE Trans. Inf. Theory 8:155–59 [Google Scholar]
  68. Hari R, Rif J, Tiihonen J, Sams M. 1992. Neuromagnetic mismatch fields to single and paired tones. Electroenceph. Clin. Neurophys. 82:152–54 [Google Scholar]
  69. Harris J, Lindsey G. 2002. The elements of phonological representation. Frontiers in Phonology J Durand, F Katamba 37–49 Harlow, UK: Longman [Google Scholar]
  70. Hestvik A, Durvasula K. 2016. Neurobiological evidence for voicing underspecification in English. Brain Lang 152:28–43 [Google Scholar]
  71. Hickok GS. 2012. Computational neuroanatomy of speech production. Nat. Rev. Neurosci. 13:135–45 [Google Scholar]
  72. Hickok GS. 2014. The architecture of speech production and the role of the phoneme in speech processing. Lang. Cogn. Process. 29:2–20 [Google Scholar]
  73. Hickok GS, Poeppel D. 2007. The cortical organization of speech processing. Nat. Rev. Neurosci. 8:393–402 [Google Scholar]
  74. Hockett CF. 1960. The origin of speech. Sci. Am. 203:88–96 [Google Scholar]
  75. Holt LL, Lotto AJ. 2008. Speech perception within an auditory cognitive science framework. Curr. Dir. Psychol. Sci. 17:42–46 [Google Scholar]
  76. Hwang S-OK, Monahan PJ, Idsardi WJ. 2010. Underspecification and asymmetries in voicing perception. Phonology 27:205–24 [Google Scholar]
  77. Idsardi WJ, Monahan PJ. 2016. Phonology. Neurobiology of Language GS Hickok, SL Small 141–51 Amsterdam: Elsevier [Google Scholar]
  78. Idsardi WJ, Poeppel D. 2012. Neurophysiological techniques in laboratory phonology. The Oxford Handbook of Laboratory Phonology AC Cohn, C Fougeron, MK Huffman 593–605 Oxford, UK: Oxford Univ. Press [Google Scholar]
  79. Jakobson R, Fant CGF, Halle M. 1961. Preliminaries to Speech Analysis Cambridge, MA: MIT Press
  80. Johnson K. 1997. Speech perception without speaker normalization. Talker Variability in Speech Processing K Johnson, JW Mullennix 145–65 San Diego: Academic [Google Scholar]
  81. Johnson K, Babel M. 2010. On the perceptual basis of distinctive features: evidence from the perception of fricatives by Dutch and English speakers. J. Phon. 38:127–36 [Google Scholar]
  82. Jusczyk PW, Luce PA. 2002. Speech perception and spoken word recognition: past and present. Ear Hear 23:2–40 [Google Scholar]
  83. Kandylaki KD, Nagels A, Tune S, Kircher T, Wiese R. et al. 2016. Predicting “when” in discourse engages the human dorsal auditory stream: an fMRI study using naturalistic stories. J. Neurosci. 36:12180–91 [Google Scholar]
  84. Katz JJ, Fodor JA. 1963. The structure of a semantic theory. Language 39:170–210 [Google Scholar]
  85. Kazanina N, Phillips C, Idsardi WJ. 2006. The influence of meaning on the perception of speech sounds. PNAS 103:11381–86 [Google Scholar]
  86. Kimberley TJ, Lewis SM. 2007. Understanding neuroimaging. Phys. Ther. 87:670–83 [Google Scholar]
  87. Klatt DH. 1989. Review of selected models of speech perception. Lexical Representation and Process WD Marslen-Wilson 169–226 Cambridge, MA: MIT Press [Google Scholar]
  88. Kraljic T, Samuel AG. 2006. Generalization in perceptual learning for speech. Psychon. Bull. Rev. 13:262–68 [Google Scholar]
  89. Kraljic T, Samuel AG. 2011. Perceptual learning evidence for contextually-specific representations. Cognition 121:459–65 [Google Scholar]
  90. Kuperberg GR, Jaeger TF. 2016. What do we mean by prediction in language comprehension?. Lang. Cogn. Neurosci. 31:32–59 [Google Scholar]
  91. Kutas M, Hillyard SA. 1980. Reading senseless sentences—brain potentials reflect semantic incongruity. Science 207:203–5 [Google Scholar]
  92. Lahiri A, Marslen-Wilson WD. 1991. The mental representation of lexical form: a phonological approach to the recognition lexicon. Cognition 38:245–94 [Google Scholar]
  93. Lahiri A, Reetz H. 2002. Underspecified recognition. Lab. Phon. 7:637–76 [Google Scholar]
  94. Lahiri A, Reetz H. 2010. Distinctive features: phonological underspecification in representation and processing. J. Phon. 38:44–59 [Google Scholar]
  95. Lau EF, Phillips C, Poeppel D. 2008. A cortical network for semantics: (de)constructing the N400. Nat. Rev. Neurosci. 9:920–33 [Google Scholar]
  96. Lawyer L, Corina D. 2014. An investigation of place and voice features using fMRI adaptation. J. Neurolinguist. 27:18–30 [Google Scholar]
  97. Leonard MK, Baud MO, Sjerps MJ, Chang EF. 2016. Perceptual restoration of masked speech in human cortex. Nat. Commun. 7:13619 [Google Scholar]
  98. Leonard MK, Chang EF. 2014. Dynamic speech representations in the human temporal lobe. Trends Cogn. Sci. 18:472–79 [Google Scholar]
  99. Levelt WJ, Roelofs A, Meyer AS. 1999. A theory of lexical access in speech production. Behav. Brain Sci. 22:1–38 [Google Scholar]
  100. Liberman AM. 1996. Speech Cambridge, MA: MIT Press
  101. Liberman AM, Cooper FS, Shankweiler D, Studdert-Kennedy M. 1967. Perception of the speech code. Psychol. Rev. 74:431–61 [Google Scholar]
  102. Liberman AM, Fry DB, Abramson AS, Eimas PD. 1962. The identification and discrimination of synthetic vowels. Lang. Speech 5:171–89 [Google Scholar]
  103. Liberman AM, Harris KS, Hoffman HS, Griffith BC. 1957. The discrimination of speech sounds within and across phoneme boundaries. J. Exp. Psychol. 54:358–68 [Google Scholar]
  104. Liberman AM, Harris KS, Kinney JA, Lane H. 1961. The discrimination of relative onset-time of the components of certain speech and nonspeech patterns. J. Exp. Psychol. 61:379–88 [Google Scholar]
  105. Liberman AM, Mattingly IG. 1985. The motor theory of speech perception revised. Cognition 21:1–36 [Google Scholar]
  106. Liberman AM, Mattingly IG. 1989. A specialization for speech perception. Science 243:489–94 [Google Scholar]
  107. Lindblom B. 1992. Phonological units as adaptive emergents of lexical development. Phonological Development: Models, Research, Implications CA Ferguson, L Menn, C Stoel-Gammon 131–63 Timonium, MD: York [Google Scholar]
  108. Lombardi L. 1991. Laryngeal Features and Laryngeal Neutralization Amherst: Univ. Mass. Press
  109. Lotto AJ, Hickok GS, Holt LL. 2009. Reflections on mirror neurons and speech perception. Trends Cogn. Sci. 13:110–14 [Google Scholar]
  110. Luck SJ. 2014. An Introduction to the Event-Related Potential Technique Cambridge, MA: MIT Press, 2nd ed..
  111. MacKain KS, Best CT, Strange W. 1981. Categorical perception of English /r/ and /l/ by Japanese bilinguals. Appl. Psycholinguist. 2:369–90 [Google Scholar]
  112. Maess B, Mamashli F, Obleser J, Helle L, Friederici AD. 2016. Prediction signatures in the brain: semantic pre-activation during language comprehension. Front. Hum. Neurosci. 10:280–11 [Google Scholar]
  113. Marslen-Wilson WD. 1987. Functional parallelism in spoken word recognition. Cognition 25:71–102 [Google Scholar]
  114. Mazaheri A, van Schouwenburg MR, Dimitrijevic A, Denys D, Cools R, Jensen O. 2014. Region-specific modulations in oscillatory alpha activity serve to facilitate processing in the visual and auditory modalities. NeuroImage 87:356–62 [Google Scholar]
  115. McCarthy JJ. 1988. Feature geometry and dependency: a review. Phonetica 45:84–108 [Google Scholar]
  116. McClelland JL, Elman JL. 1986. The TRACE model of speech perception. Cogn. Psychol. 18:1–86 [Google Scholar]
  117. McGurk H, MacDonald J. 1976. Hearing lips and seeing voices. Nature 264:746–48 [Google Scholar]
  118. McMurray B, Aslin RN, Tanenhaus MK, Spivey MJ, Subik D. 2008. Gradient sensitivity to within-category variation in words and syllables. J. Exp. Psychol. Hum. Percept. Perform. 34:1609–31 [Google Scholar]
  119. McMurray B, Tanenhaus MK, Aslin RN. 2002. Gradient effects of within-category phonetic variation on lexical access. Cognition 86:B33–42 [Google Scholar]
  120. McQueen JM, Cutler A, Norris D. 2006. Phonological abstraction in the mental lexicon. Cogn. Sci. 30:1113–26 [Google Scholar]
  121. Mesgarani N, Cheung C, Johnson K, Chang EF. 2014. Phonetic feature encoding in human superior temporal gyrus. Science 343:1006–10 [Google Scholar]
  122. Mester RA, Itô J. 1989. Feature predictability and underspecification: palatal prosody in Japanese mimetics. Language 65:258–93 [Google Scholar]
  123. Mielke J. 2008. The Emergence of Distinctive Features Oxford, UK: Oxford Univ. Press
  124. Miller GA, Nicely PE. 1955. An analysis of perceptual confusions among some English consonants. J. Acoust. Soc. Am. 27:338–52 [Google Scholar]
  125. Miller JD. 1989. Auditory–perceptual interpretation of the vowel. J. Acoust. Soc. Am. 85:2114–34 [Google Scholar]
  126. Miller JL, Volatis LE. 1989. Effect of speaking rate on the perceptual structure of a phonetic category. Percept. Psychophys. 46:505–12 [Google Scholar]
  127. Mitterer H. 2003. Understanding “gardem bench”: studies on the perception of assimilation word forms PhD thesis Univ. Maastricht Maastricht, Neth.:
  128. Mitterer H. 2007. Behavior reflects the (degree of) reality of phonological features in the brain as well. Proceedings of the 16th International Congress of Phonetic Sciences J Trouvain, WJ Barry 127–30 Dudweiler, Ger.: Pirrot [Google Scholar]
  129. Mohanan KP. 1991. On the bases of radical underspecification. Nat. Lang. Linguist. Theory 9:285–325 [Google Scholar]
  130. Moisik SR, Gick B. 2017. The quantal larynx: the stable regions of laryngeal biomechanics and implications for speech production. J. Speech Lang. Hear. Res. 60:540–21 [Google Scholar]
  131. Molinaro N, Monsalve IF, Lizarazu M. 2016. Is there a common oscillatory brain mechanism for producing and predicting language?. Lang. Cogn. Neurosci. 31:145–58 [Google Scholar]
  132. Monahan PJ, Idsardi WJ. 2010. Auditory sensitivity to formant ratios: toward an account of vowel normalisation. Lang. Cogn. Process. 25:808–39 [Google Scholar]
  133. Monahan PJ, Lau EF, Idsardi WJ. 2013. Computational primitives in phonology and their neural correlates. The Cambridge Handbook of Biolinguistics C Boeckx, KK Grohmann 233–56 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  134. Morillon B, Schroeder CE. 2015. Neuronal oscillations as a mechanistic substrate of auditory temporal prediction. Ann. N. Y. Acad. Sci. 1337:26–31 [Google Scholar]
  135. Mowrey RA, MacKay IRA. 1990. Phonological primitives: electromyographic speech error evidence. J. Acoust. Soc. Am. 88:1299–1312 [Google Scholar]
  136. Nashida T, Yabe H, Sato Y, Hiruma T, Sutoh T. et al. 2000. Automatic auditory information processing in sleep. Sleep 23:821–28 [Google Scholar]
  137. Näätänen R. 2001. The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm). Psychophysiology 38:1–21 [Google Scholar]
  138. Näätänen R, Jacobsen T, Winkler I. 2005. Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. Psychophysiology 42:25–32 [Google Scholar]
  139. Näätänen R, Kreegipuu K. 2012. The mismatch negativity (MMN). The Oxford Handbook of Event-Related Potential Components ES Kappenman 143–58 Oxford, UK: Oxford Univ. Press [Google Scholar]
  140. Näätänen R, Lehtokoski A, Lennes M, Cheour M, Huotilainen M. et al. 1997. Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature 385:432–34 [Google Scholar]
  141. Näätänen R, Paavilainen P, Rinne T, Alho K. 2007. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin. Neurophysiol. 118:2544–90 [Google Scholar]
  142. Näätänen R, Winkler I. 1999. The concept of auditory stimulus representation in cognitive neuroscience. Psychol. Bull. 125:826–59 [Google Scholar]
  143. Norris D. 1994. Shortlist: a connectionist model of continuous speech recognition. Cognition 52:189–234 [Google Scholar]
  144. Norris D, McQueen JM. 2008. Shortlist B: a Bayesian model of continuous speech recognition. Psychol. Rev. 115:357–95 [Google Scholar]
  145. Norris D, McQueen JM, Cutler A. 2000. Merging information in speech recognition: Feedback is never necessary. Behav. Brain Sci. 23:299–325 [Google Scholar]
  146. Obleser J, Eisner F. 2009. Pre-lexical abstraction of speech in the auditory cortex. Trends Cogn. Sci. 13:14–19 [Google Scholar]
  147. Obleser J, Lahiri A, Eulitz C. 2003. Auditory-evoked magnetic field codes place of articulation in timing and topography around 100 milliseconds post syllable onset. NeuroImage 20:1839–47 [Google Scholar]
  148. Obleser J, Lahiri A, Eulitz C. 2004. Magnetic brain response mirrors extraction of phonological features from spoken vowels. J. Cogn. Neurosci. 16:31–39 [Google Scholar]
  149. Obleser J, Weisz N. 2012. Suppressed alpha oscillations predict intelligibility of speech and its acoustic details. Cereb. Cortex 22:2466–77 [Google Scholar]
  150. Penfield W, Roberts L. 1959. Speech and Brain Mechanisms Princeton, NJ: Princeton Univ. Press
  151. Peterson GE, Barney HL. 1952. Control methods used in a study of vowels. J. Acoust. Soc. Am. 24:175–84 [Google Scholar]
  152. Phillips C. 2001. Levels of representation in the electrophysiology of speech perception. Cogn. Sci. 25:711–31 [Google Scholar]
  153. Phillips C, Pellathy T, Marantz A, Yellin E, Wexler K. et al. 2000. Auditory cortex accesses phonological categories: an MEG mismatch study. J. Cogn. Neurosci. 12:1038–55 [Google Scholar]
  154. Picton TW. 2011. Human Auditory Evoked Potentials San Diego: Plural
  155. Pierrehumbert JB. 2003. Phonetic diversity, statistical learning, and acquisition of phonology. Lang. Speech 46:115–54 [Google Scholar]
  156. Pierrehumbert JB. 2016. Phonological representation: beyond abstract versus episodic. Annu. Rev. Linguist. 2:33–52 [Google Scholar]
  157. Poeppel D. 2003. The analysis of speech in different temporal integration windows: cerebral lateralization as “asymmetric sampling in time. .” Speech Commun 41:245–55 [Google Scholar]
  158. Poeppel D. 2012. The maps problem and the mapping problem: Two challenges for a cognitive neuroscience of speech and language. Cogn. Neuropsychol. 29:34–55 [Google Scholar]
  159. Poeppel D, Idsardi WJ, van Wassenhove V. 2008. Speech perception at the interface of neurobiology and linguistics. Philos. Trans. R. Soc. B 363:1071–86 [Google Scholar]
  160. Poeppel D, Monahan PJ. 2011. Feedforward and feedback in speech perception: revisiting analysis by synthesis. Lang. Cogn. Process. 26:935–51 [Google Scholar]
  161. Port RF, Leary AP. 2005. Against formal phonology. Language 81:927–64 [Google Scholar]
  162. Potter RK, Steinberg JC. 1950. Toward the specification of speech. J. Acoust. Soc. Am. 22:807–20 [Google Scholar]
  163. Prince A, Smolensky P. 2004. Optimality Theory: Constraint Interaction in Generative Grammar Malden, MA: Wiley-Blackwell
  164. Rao RP, Ballard DH. 1999. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2:79–87 [Google Scholar]
  165. Reiss C. 2018. Substance free phonology. The Routledge Handbook of Phonological Theory SJ Hannahs, A Bosch New York: Routledge In press [Google Scholar]
  166. Rivera-Gaxiola M, Silva-Pereyra J, Kuhl PK. 2005. Brain potentials to native and non-native speech contrasts in 7- and 11-month-old American infants. Dev. Sci. 8:162–72 [Google Scholar]
  167. Roberts TPL, Ferrari P, Stufflebeam SM, Poeppel D. 2000. Latency of the auditory evoked neuromagnetic field components: stimulus dependence and insights toward perception. J. Clin. Neurophys. 17:114–29 [Google Scholar]
  168. Roberts TPL, Flagg EJ, Gage NM. 2004. Vowel categorization induces departure of M100 latency from acoustic prediction. NeuroReport 15:1679–82 [Google Scholar]
  169. Roelofs A. 1999. Phonological segments and features as planning units in speech production. Lang. Cogn. Process. 14:173–200 [Google Scholar]
  170. Sabri M, Radnovich AJ, Li TQ, Kareken DA. 2005. Neural correlates of olfactory change detection. NeuroImage 25:969–74 [Google Scholar]
  171. Sagey E. 1986. The representation of features and relations in autosegmental phonology PhD thesis MIT Cambridge, MA:
  172. Sams M, Kaukoranta E, Hämäläinen M, Näätänen R. 1991. Cortical activity elicited by changes in auditory stimuli: different sources for the magnetic N100m and mismatch responses. Psychophysiology 28:21–29 [Google Scholar]
  173. Samuel AG. 2011. Speech perception. Annu. Rev. Psychol. 62:49–72 [Google Scholar]
  174. Scharinger M, Idsardi WJ, Poe S. 2011. A comprehensive three-dimensional cortical map of vowel space. J. Cogn. Neurosci. 23:3972–82 [Google Scholar]
  175. Scharinger M, Monahan PJ, Idsardi WJ. 2016. Linguistic category structure influences early auditory processing: converging evidence from mismatch responses and cortical oscillations. NeuroImage 128:293–301 [Google Scholar]
  176. Scharinger M, Monahan PJ, Idsardi WJ. 2012. Asymmetries in the processing of vowel height. J. Speech Lang. Hear. Res. 55:903–18 [Google Scholar]
  177. Schluter K, Politzer-Ahles S, Almeida D. 2016. No place for /h/: an ERP investigation of English fricative place features. Lang. Cogn. Neurosci. 31:728–40 [Google Scholar]
  178. Schluter K, Politzer-Ahles S, Al Kaabi M, Almeida D. 2017. Laryngeal features are phonetically abstract: mismatch negativity evidence from Arabic, English, and Russian. Front. Psychol. 8:746 [Google Scholar]
  179. Schuberth RE, Eimas PD. 1977. Effects of context on the classification of words and nonwords. J. Exp. Psychol. Hum. Percept. Perform. 3:27–36 [Google Scholar]
  180. Sculthorpe LD, Ouellet DR, Campbell KB. 2009. MMN elicitation during natural sleep to violations of an auditory pattern. Brain Res 1290:52–62 [Google Scholar]
  181. Sharma A, Dorman MF. 2000. Neurophysiologic correlates of cross-language phonetic perception. J. Acoust. Soc. Am. 107:2697–703 [Google Scholar]
  182. Smith CL. 1997. The devoicing of /z/ in American English: effects of local and prosodic context. J. Phon. 25:471–500 [Google Scholar]
  183. Soli SD, Arabie P. 1979. Auditory versus phonetic accounts of observed confusions between consonant phonemes. J. Acoust. Soc. Am. 66:46–59 [Google Scholar]
  184. Steriade D. 2005. Underspecification and markedness. The Handbook of Phonological Theory JA Goldsmith 114–74 Cambridge, MA: Blackwell [Google Scholar]
  185. Stevens KN. 1989. On the quantal nature of speech. J. Phon. 17:3–45 [Google Scholar]
  186. Stevens KN. 2002. Toward a model for lexical access based on acoustic landmarks and distinctive features. J. Acoust. Soc. Am. 111:1872–91 [Google Scholar]
  187. Stevens KN, Blumstein SE. 1978. Invariant cues for place of articulation in stop consonants. J. Acoust. Soc. Am. 64:1358–68 [Google Scholar]
  188. Stevens KN, Halle M. 1967. Remarks on analysis by synthesis and distinctive features. Models for the Perception of Speech and Visual Form W Wathen-Dunn 88–102 Cambridge, MA: MIT Press [Google Scholar]
  189. Stevens KN, Hanson HM. 2010. Articulatory–acoustic relations as the basis of distinctive contrasts. Handbook of Phonetic Science WJ Hardcastle, J Laver, FE Gibbon 424–53 Chichester, UK: Wiley-Blackwell, 2nd ed.. [Google Scholar]
  190. Stevens KN, Keyser SJ. 2010. Quantal theory, enhancement and overlap. J. Phon. 38:10–19 [Google Scholar]
  191. Studdert-Kennedy M, Shankweiler D. 1970. Hemispheric specialization for speech perception. J. Acoust. Soc. Am. 48:579–94 [Google Scholar]
  192. Studdert-Kennedy M, Shankweiler D, Pisoni D. 1972. Auditory and phonetic processes in speech perception: evidence from a dichotic study. Cogn. Psychol. 3:455–66 [Google Scholar]
  193. Sumby WH, Pollack I. 1954. Visual contribution to speech intelligibility in noise. J. Acoust. Soc. Am. 26:212–15 [Google Scholar]
  194. Sussman HM. 2000. Phonemic representation: a twenty-first century challenge. Brain Lang 71:237–40 [Google Scholar]
  195. Tales A, Newton P, Troscianko T, Butler S. 1999. Mismatch negativity in the visual modality. NeuroReport 10:3363–67 [Google Scholar]
  196. Tian X, Poeppel D. 2010. Mental imagery of speech and movement implicates the dynamics of internal forward models. Front. Psychol. 1:166 [Google Scholar]
  197. Toscano JC, McMurray B, Dennhardt J, Luck SJ. 2010. Continuous perception and graded categorization: electrophysiological evidence for a linear relationship between the acoustic signal and perceptual encoding of speech. Psychol. Sci. 21:1532–40 [Google Scholar]
  198. Ullman S, Vidal-Naquet M, Sali E. 2002. Visual features of intermediate complexity and their use in classification. Nat. Neurosci. 5:682–87 [Google Scholar]
  199. van der Hulst H. 2016. Monovalent “features” in phonology. Lang. Linguist. Compass 10:83–102 [Google Scholar]
  200. van Wassenhove V, Grant KW, Poeppel D. 2005. Visual speech speeds up the neural processing of auditory speech. PNAS 102:1181–86 [Google Scholar]
  201. van Wassenhove V, Grant KW, Poeppel D. 2007. Temporal window of integration in auditory–visual speech perception. Neuropsychologia 45:598–607 [Google Scholar]
  202. Vanhaudenhuyse A, Laureys S, Perrin F. 2007. Cognitive event-related potentials in comatose and post-comatose states. Neurocrit. Care 8:262–70 [Google Scholar]
  203. Wang MD, Bilger RC. 1973. Consonant confusions in noise: a study of perceptual features. J. Acoust. Soc. Am. 54:1248–66 [Google Scholar]
  204. Wang XJ. 2010. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90:1195–268 [Google Scholar]
  205. Werker JF, Logan JS. 1985. Cross-language evidence for three factors in speech perception. Percept. Psychophys. 37:35–44 [Google Scholar]
  206. Wijnen VJM, van Boxtel GJM, Eilander HJ, de Gelder B. 2007. Mismatch negativity predicts recovery from the vegetative state. Clin. Neurophysiol. 118:597–605 [Google Scholar]
  207. Winkler I. 2007. Interpreting the mismatch negativity. J. Psychophysiol. 21:147–63 [Google Scholar]
  208. Winkler I, Lehtokoski A, Alku P, Vainio M, Czigler I. et al. 1999. Pre-attentive detection of vowel contrasts utilizes both phonetic and auditory memory representations. Brain Res. Cogn. Brain Res. 7:357–69 [Google Scholar]
  209. Yuille A, Kersten D. 2006. Vision as Bayesian inference: analysis by synthesis?. Trends Cogn. Sci. 10:301–8 [Google Scholar]
/content/journals/10.1146/annurev-linguistics-011817-045537
Loading
/content/journals/10.1146/annurev-linguistics-011817-045537
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error