Skip to main content
Log in

Action as an Integral Characteristic of Atmospheric (Climatic) Structures: Estimates for Tropical Cyclones

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

To evaluate the integral energetic effect of tropical cyclones, a special characteristic was used—an action with the dimension [energy] × [time]. Estimates of changes in the total action of tropical cyclones in the northwestern Pacific Ocean (NWPO) are obtained from observations for the period of 1951–2019. A significant increase in the interannual variability of the action of tropical cyclones in recent decades has been noted against the background of an increase in average values. There are also tendencies of an increase in the action of tropical cyclones and typhoons reaching extratropical latitudes, with significant interannual variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Khain, A.P. and Sutyrin, G.G., Tropicheskie tsiklony i ikh vzaimodeistvie s okeanom (Tropical Cyclones and Their Interaction with the Ocean), Leningrad: Gidrometeoizdat, 1983.

  2. Intense Atmospheric Vortices, Bengtsson, L. and Lighthill, J, Eds., Berlin: Springer, 1982.

    Google Scholar 

  3. Gidrometeorologicheskie opasnosti (Hydrometeorological Hazards), Golitsyn, G.S., and Vasil’ev, A.A., Eds., Moscow: KRUK, 2001.

  4. Golitsyn, G.S., Demchenko, P.F., Mokhov, I.I., and Priputnev, S.G., “Tropical cyclones: statistical regularities of distribution functions depending on intensity and lifetime,” Dokl. Earth Sci., 1999, vol. 366, no. 4, pp. 537–543.

    Google Scholar 

  5. Klein, P.M., Harr, P.A., and Elsberry, R.L., “Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage,” Weather Forecasting, 2000, vol. 15, pp. 373–395.

    Article  Google Scholar 

  6. Jones, S.C., Harr, P.A., Abraham, J., Bosart, L.F., Bowyer, P.J., Evans, J.L., Hanley, D.E., Hanstrum, B.N., Hart, R.E., Lalaurette, F., Sinclair, M.R., Smith, R.K., and Thorncroft, C., “The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions,” Weather Forecasting, 2003, vol. 18, no. 6, pp. 1052–1092.

    Article  Google Scholar 

  7. Dobryshman, E.M. and Makarova, M.E., “Typhoons as an active component of regional climate,” Meteorol. Gidrol., No. 6, 49–58 (2004).

  8. Emanuel, K., “Increased destructiveness of tropical cyclones over the past 30 years,” Nature, vol. 436, pp. 686–688 (2005).

    Article  Google Scholar 

  9. Emanuel, K., “Environmental factors affecting tropical cyclone power dissipation,” J. Clim., 2007, vol. 20, pp. 5497–5509.

    Article  Google Scholar 

  10. Golitsyn, G.S., “Polar lows and tropical hurricanes: Their energy and sizes and a quantitative criterion for their generation, Izv., Atmos. Oceanic Phys., 2008, vol. 44, pp. 537–547.

    Article  Google Scholar 

  11. Kitabatake, N., “Climatology of extratropical transition of tropical cyclones in the Western North Pacific defined by using cyclone phase space,” J. Meteorol. Soc. Jpn., 2011, vol. 89, no. 4, pp. 309–325.

    Article  Google Scholar 

  12. Villarini, G. and Vecchi, G.A., “North Atlantic power dissipation index (PDI) and accumulated cyclone energy (ACE): Statistical modeling and sensitivity to sea surface temperature changes,” J. Clim., 2012, vol. 25, pp. 625–637.

    Article  Google Scholar 

  13. Mokhov, I.I., Dobryshman, E.M., and Makarova, M.E., “Transformation of tropical cyclones into extratropical: The tendencies of 1970–2012,” Dokl. Earth Sci., 2014, vol. 454, no. 2, pp. 59–64.

    Article  Google Scholar 

  14. Evans, C. Wood, K.M., Aberson, S.D., et al., “The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts,” Mon. Weather Rev., 2017, vol. 145, pp. 4317–4344.

    Article  Google Scholar 

  15. Liu, M., Vecchi, G.A. Smith, J.A. and Murakami, H., “The present-day simulation and twenty-first-century projection of the climatology of extratropical transition in the North Atlantic,” J. Clim., 2017, vol. 30, pp. 2739–2756.

    Article  Google Scholar 

  16. Intensivnye atmosfernye vikhri i ikh dinamika (Intense Atmospheric Vortices and Their Dynamics), Mokhov, I.I., Kurgansky, M.V., and Chkhetiani, O.G., Eds., Moscow: GEOS, 2018.

    Google Scholar 

  17. Knutson, T., Camargo, S.J., Chan, J.C.L., Emanuel, K., Ho, C.-H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L., “Tropical cyclones and climate change assessment,” Bull. Am. Meteorol. Soc., 2019, vol. 100, no. 10, pp. 1987–2007.

    Article  Google Scholar 

  18. Mokhov, I.I., Makarova, M.E., and Poroshenko, A.G., “Tropical cyclones and their transformation into extratropical: estimates of the half-century trends,” Dokl. Earth Sci., 2020, vol. 493, pp. 552–557.

    Article  Google Scholar 

  19. Mokhov, I.I., in Proc. IV Int. Conf. on Modelling of Global Climate Change and Variability (MPI, Hamburg, 1999), p. 223.

  20. Mokhov, I.I., “Action as an integral characteristic of climatic structures: estimates for atmospheric blockings,” Dokl. Earth Sci., 2006, vol. 409, pp. 925–928.

    Article  Google Scholar 

  21. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika. T.1. Mekhanika (Theoretical Physics, vol. 1. Mechanics), Moscow: Fizmatlit, 2004.

  22. Mokhov, I.I., Akperov, M.G., Dufresne, J.-L., and Le Treut, H., in Research Activities in Atmospheric and Oceanic Modelling, Cote, J., Ed. Geneva: World Climate Research Programme, 2009, pp. 9–10.

    Google Scholar 

  23. Mokhov, I.I. and Poroshenko, A.G., in Research Activities in Atmospheric and Oceanic Modelling, Astakhova, E., Ed., Geneva: World Climate Research Programme, 2020, pp. 2.15–2.16.

    Google Scholar 

  24. Golitsyn, G.S., Mokhov, I.I., Akperov, M.G., and Bardin, M.Yu., “Distribution functions of probabilities of cyclones and anticyclones from 1952 to 2000: An instrument for the determination of global climate variation,” Dokl. Earth Sci., 2007, vol. 413, pp. 324–326.

    Article  Google Scholar 

  25. Akperov, M.G., Bardin, M.Yu., Volodin, E.M., Golitsyn, G.S., and Mokhov, I.I., “Probability distributions for cyclones and anticyclones from the NCEP/NCAR reanalysis data and the INM RAS Climate Model,” Izv., Atmos. Oceanic Phys., 2007, 43, pp. 705–712.

    Article  Google Scholar 

  26. Willoughby, H.E., “Gradient balance in tropical cyclones,” J. Atmos. Sci., 1990, vol. 47, no. 2, pp. 265–274.

    Article  Google Scholar 

  27. Schenkel, B.A., and Hart, R.E., “An examination of the thermodynamic impacts of Western North Pacific tropical cyclones on their tropical tropospheric environment,” J. Clim., 2015, vol. 28, pp.7529–7560 (2015).

  28. Chavas, D.R., Lin, N., Dong, W., and Lin, Y., “Observed tropical cyclone size revisited,” J. Clim., 2016, vol. 29, pp. 2923–2939.

    Article  Google Scholar 

  29. Chavas, D.R., Reed, K.A., and Knaff, J.A. “Physical understanding of the tropical cyclone wind-pressure relationship,” Nat. Commun., 2017, vol. 8, no. 1, p. 1360. https://doi.org/10.1038/s41467-017-01546-9

    Article  Google Scholar 

  30. Mokhov, I.I. and Timazhev, A.V., “Climatic anomalies in Eurasia from El Niño/La Niña effects,” Dokl. Earth Sci., 2013, vol. 453, pp. 1141–1144.

    Article  Google Scholar 

  31. Mokhov, I.I. and Timazhev, A.V., “Assessing the probability of El Niño-related weather and climate anomalies in Russian regions,” Russ. Meteorol. Hydrol., 2017, vol. 42, pp. 635–643.

    Article  Google Scholar 

  32. Sharmila, S., and Walsh, K.J.E., “Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion,” Nat. Clim. Change, 2018, vol. 8, no. 8, pp. 730–736.

    Article  Google Scholar 

  33. Studholme, J. and Gulev, S., “Concurrent changes to Hadley circulation and the meridional distribution of tropical cyclones,” J. Clim., 2018, vol. 31, pp. 4367–4389.

    Article  Google Scholar 

  34. Pudov, V.D. and Petrichenko, S.A., “Connection between tropical cyclone evolution in the northwestern Pacific Ocean and the El Niño phenomenon,” Okeanologiya (Moscow, Russ. Fed.), 1998, vol. 38, no. 4, pp. 496–501.

  35. Wang, B., and Chan, J.C.L., “How strong ENSO events affect tropical storm activity over the western North Pacific,” J. Clim., 2002, vol. 15, pp. 1643–1658.

    Article  Google Scholar 

  36. Mokhov, I.I., Eliseev, A.V., and Khvorost’yanov, D.V., “Evolution of the characteristrics of interannual climate variability associated with the El Niño and La Niña phenomena,” Izv., Atmos. Ocean. Phys., 2000, vol. 36, no. 6, pp. 681–691.

    Google Scholar 

  37. Mokhov, I.I., Khvorost’yanov, D.V., and Eliseev, A.V., “Decadal and longer term changes in El Niño – Southern Oscillation characteristics,” Int. J. Climatol., 2004, vol. 24, pp. 401–414.

    Article  Google Scholar 

Download references

Funding

An analysis of tropical cyclones was carried out within the framework of the Russian Science Foundation project (19-17-00240). The analysis of tropical cyclones, including typhoons that have reached extratropical latitudes, was carried out as part of the Russian Foundation for Basic Research project (17-29-05098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Mokhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhov, I.I., Poroshenko, A.G. Action as an Integral Characteristic of Atmospheric (Climatic) Structures: Estimates for Tropical Cyclones. Izv. Atmos. Ocean. Phys. 56, 539–544 (2020). https://doi.org/10.1134/S0001433820060079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820060079

Keywords:

Navigation