Skip to main content
Log in

Latitudinal Distribution of the Parameters of Internal Gravity Waves in the Atmosphere Derived from Amplitude Fluctuations of Radio Occultation Signals

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The method of reconstructing the global distribution of statistical parameters of internal gravity waves (IGWs) in the atmosphere has been tested using the data of amplitude fluctuation measurements of a radio signal in satellite radio occultation (RO) observations. In our previous work, for the chosen model of the spatial IGW spectrum, its relationship with the spectra of amplitude fluctuations was obtained, an algorithm for reconstructing the model parameters was developed, and the reconstruction errors were estimated. The reconstructed parameters of the vertical IGW spectrum are the external scale, which separates the unsaturated large-scale waves from saturated small-scale waves, and the structural characteristic, which determines the spectral amplitude of saturated waves. These parameters are used to calculate the variance of temperature fluctuations and the potential energy of the waves. This article presents the altitude–latitude distribution of IGW parameters in the stratosphere according to the measurements of the COSMIC experiment in 2011. The characteristic features of these distributions are noted, and the results are compared with the data of other measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kan, V., Gorbunov, M.E., Shmakov, A.V., and Sofieva, V.F., “Reconstruction of the parameters of internal gravity waves in the atmosphere from amplitude fluctuations in a radio occultation experiment,” Izv., Atmos. Oceanic Phys., 2020, vol. 56, no. 5, pp. 435–437. https://doi.org/10.1134/S0001433820050072

    Article  Google Scholar 

  2. Gurvich, A.S. and Brekhovskikh, V.L., “Study of the turbulence and inner waves in the stratosphere based on the observations of stellar scintillations from space: A model of scintillation spectra,” Waves Random Media 2001, vol. 11, no. 3, pp. 163–181.

    Google Scholar 

  3. Gurvich, A.S. and Kan, V., “Structure of air density irregularities in the stratosphere from spacecraft observations of stellar scintillation. 1. Three-dimensional spectrum model 3D and recovery of its parameters,” Izv., Atmos. Oceanic Phys., 2003, vol. 39, no. 3, p. 300–310.

    Google Scholar 

  4. Gurvich, A.S. and Kan, V., “Structure of air density irregularities in the stratosphere from spacecraft observations of stellar scintillation. 2. Characteristic scales, structure characteristics, and kinetic energy dissipation,” Izv., Atmos. Oceanic Phys., 2003, vol. 39, no. 3, p. 311–321.

    Google Scholar 

  5. Sofieva, V.F., Gurvich, A.S., Dalaudier, F., and Kan, V., “Reconstruction of internal gravity waves and turbulence parameters in the stratosphere using GOMOS scintillation measurements,” J. Geophys. Res., 2007, vol. 112, p. D12113. https://doi.org/10.1029/2006JD007483

    Article  Google Scholar 

  6. Dewan, E.M., and Good, R.F., “Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in atmosphere,” J. Geophys. Res., 1986, vol. 91, no. D2, pp. 2742–2748. https://doi.org/10.1029/JD091iD02p02742

    Article  Google Scholar 

  7. Smith, S.A., Fritts, D.C., and Van Zandt, T.E., “Evidence of saturation spectrum of atmospheric gravity waves,” J. Atmos. Sci., 1987, vol. 44, no. 10, pp. 1404–1410.

    Article  Google Scholar 

  8. Fritts, D.C., “A review of gravity wave saturation processes, effects, and variability in the middle atmosphere,” Pure Appl. Geophys., 1989, vol. 130, no. 2/3, pp. 343–371.

    Article  Google Scholar 

  9. Tsuda, T., Nishida, M., Rocken, C., and Ware, R.H., “A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET),” J. Geophys. Res., 2000, vol. 105, no. D6, pp. 7257–7273.

    Article  Google Scholar 

  10. Fritts, D.C. and Alexander, M.J., “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys., 2003, vol. 41, no. 1. https://doi.org/10.1029/2001RG000106

  11. Kan, V., Gorbunov, M.E., and Sofieva, V.F., “Fluctuations of radio occultation signals in sounding the Earth’s atmosphere,” Atmos. Meas. Tech., 2018, vol. 11, pp. 663–680. https://doi.org/10.5194/amt-11-663-2018

    Article  Google Scholar 

  12. Sofieva, V.F., Gurvich, A.S., and Dalaudier, F., “Gravity wave spectra parameters in 2003 retrieved from stellar scintillation measurements by GOMOS,” Geophys. Res. Lett., 2009, vol. 36, pp. L05811. https://doi.org/10.1029/2008GL036726

    Article  Google Scholar 

  13. Tsuda, T., Van Zandt, T.E., Mizumoto, M., Kato, S., and Fukao, S., “Spectral analysis of temperature and Brunt–Vaisala frequency fluctuations observed by radiosondes,” J. Geophys. Res., 1991, vol. 96, no. D9, pp. 17265–17278.

    Article  Google Scholar 

  14. Gurvich, A.S., “Fluctuations in the observations of extraterrestrial cosmic sources through the Earth’s atmosphere,” Radiophys. Quantum Electron., 1984, vol. 27, no. 8, pp. 665–672.

    Article  Google Scholar 

  15. Kan, V., Sofieva, V.F., and Dalaudier, F., “Variable anisotropy of small-scale stratospheric irregularities retrieved from stellar scintillation measurements by GOMOS/Envisat,” Atmos. Meas. Tech., 2014, vol. 7, pp. 1861–1872. https://doi.org/10.5194/amt-7-1861-2014

    Article  Google Scholar 

  16. Kan, V., “Stellar scintillations in spacecraft occultation experiment for atmospheric irregularities with variable anisotropy,” Atmos. Oceanic Opt., 2015, vol. 29, pp. 42–55. https://doi.org/10.1134/S1024856016010085

    Article  Google Scholar 

  17. Wang, L., Geller, M.A., and Alexander, M.J., “Spatial and temporal variations of gravity wave parameters. Part I: Intrinsic frequency, wavelength, and vertical propagation direction,” J. Atmos. Sci., 2005, vol. 62, no. 1, pp. 125–142.

    Article  Google Scholar 

  18. Nastrom, G.D., Van Zandt, T.E., and Warnock, J.M., “Vertical wavenumber spectra of wind and temperature from high-resolution balloon soundings over Illinois,” J. Geophys. Res., 1997, vol. 102, no. D6, pp. 6685–6701.

    Article  Google Scholar 

  19. Wang, L., and Alexander, M.J., “Global estimates of gravity wave parameters from GPS radio occultation temperature data,” J. Geophys. Res., 2010, vol. 115, p. D21122. https://doi.org/10.1029/2010JD013860

    Article  Google Scholar 

  20. Schmidt, T., Alexander, P., and de la Torre, A., “Stratospheric gravity wave momentum flux from radio occultations,” J. Geophys. Res.: Atmos., 2016, vol. 121, p. 4443–4467. https://doi.org/10.1002/2015JD024135

    Article  Google Scholar 

  21. Steiner, A.K., and Kirchengast, G., “Gravity wave spectra from GPS/MET occultation observations,” J. Atmos. Ocean Technol., 2001, vol. 17, no. 4, pp. 495–503.

    Article  Google Scholar 

  22. Hei, H., Tsuda, T., and Hirooka, T., “Characteristics of atmospheric gravity wave activity in the polar regions revealed by GPS radio occultation data with CHAMP,” J. Geophys. Res., 2008, vol. 113, p. D04107. https://doi.org/10.1029/2007JD008938

    Article  Google Scholar 

  23. Rapp, M., Dörnbrackl, A., and Kaifler, B., “An intercomparison of stratospheric gravity wave potential energy densities from METOP GPS radio occultation measurements and ECMWF model data,” Atmos. Meas. Tech., 2018, vol. 11, pp. 1031–1048. https://doi.org/10.5194/amt-11-1031-2018

    Article  Google Scholar 

  24. Ratnam, M.V., Tetzlaff, G., and Jacobi, C., “Global and seasonal variations of stratospheric gravity wave activity deduced from the CHAMP/GPS satellite,” J. Atmos. Sci., 2004, vol. 61, no. 13, pp. 1610–1620.

    Article  Google Scholar 

  25. John, S.R. and Kumar, K.K., “A discussion on the methods of extracting gravity wave perturbations from space-based measurements,” Geophys. Res. Lett., 2013, vol. 40, pp. 2406–2410. https://doi.org/10.1002/GRL.50451

    Article  Google Scholar 

  26. Alexander, M.J., “Interpretations of observed climatological patterns in stratospheric gravity wave variance,” J. Geophys. Res., 1998, vol. 103, no. D8, pp. 8627–8640.

    Article  Google Scholar 

  27. Kursinski, E.R., Hajj, G.A., Schofield, J.T., Linfield, R.P., and Hardy, K.R., “Observing Earth’s atmosphere with radio occultation measurements using the global positioning system,” J. Geophys. Res., 1997, vol. 102, no. D19, pp. 23429–23465.

    Article  Google Scholar 

  28. Gorbunov, M.E. and Lauritsen, K.B., “Analysis of wave fields by Fourier Integral Operators and its application for radio occultations,” Radio Sci., 2004, vol. 39, no. 4, p. RS4010. https://doi.org/10.1029/2003RS002971

    Article  Google Scholar 

  29. Gorbunov, M.E., Fizicheskie i matematicheskie printsipy sputnikovogo radiozatmennogo zondirovaniya atmosfery Zemli (Physical and Mathematical Foundations of Satellite Radio Occultation Probing of the Earth’s Atmosphere), Moscow: GEOS, 2019.

  30. Murphy, D.J., Alexander, S.P., Klekociuk, A.R., Love, P.T., and Vincent, R.A., “Radiosonde observations of gravity waves in the lower stratosphere over Davis, Antarctica,” J. Geophys. Res., 2014, vol. 119, p. 996. https://doi.org/10.1002/2014JD022448

    Article  Google Scholar 

  31. Tsuda, T., and Hocke, K., “Vertical wave number spectrum of temperature fluctuations in the stratosphere using GPS occultation data,” J. Meteorol. Soc. Jpn., 2002, vol. 80, no. 4B, pp. 925–938.

    Article  Google Scholar 

  32. de la Torre, A. Schmidt, T. and Wickert, J., “A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP,” Geophys. Res. Lett., 2006, vol. 33, p. L24809. https://doi.org/10.1029/2006GL027696

    Article  Google Scholar 

  33. Hindley, N.P., Wright, C.J., Smith, N.D., and Mitchell, N.J., “The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO,” Atmos. Chem. Phys., 2015, vol. 15, pp. 7797–7818. https://doi.org/10.5194/acp-15-7797-2015

    Article  Google Scholar 

  34. Alexander, S.P., Tsuda, T., and Kawatani, Y., “Cosmic GPS Observations of Northern Hemisphere winter stratospheric gravity waves and comparisons with an atmospheric general circulation model,” Geophys. Res. Lett., 2008, vol. 35, p. L10808. https://doi.org/10.1029/2008GL033174

    Article  Google Scholar 

  35. McDonald, A.J., “Gravity wave occurrence statistics derived from paired COSMIC/FORMOSAT3 observations,” J. Geophys. Res., 2012, vol. 117, p. D15406. https://doi.org/10.1029/2011JD016715

    Article  Google Scholar 

  36. Chane-Ming, F., Molinaro, F., Leveau, J., Keckhut, P., and Hauchecorne, A., “Analysis of gravity waves in the tropical middle atmosphere over La Reunion Island (21° S, 55° E) with lidar using wavelet techniques,” Ann. Geophys., 2000, vol. 18, pp. 485–498.

    Google Scholar 

  37. Marquard, C. and Healy, S.B., “Measurement noise and stratospheric gravity wave characteristics obtained from GPS occultation data,” J. Meteorol. Soc. Jpn., 2005, vol. 83, no. 3, pp. 417–428.

    Article  Google Scholar 

  38. Gubenko, V.N., Pavelyev, A.G., Salimzyanov, R.R., and Pavelyev, A.A., “Reconstruction of internal gravity wave parameters from radio occultation retrievals of vertical temperature profiles in the Earth’s atmosphere,” Atm-os. Meas. Tech., 2011, vol. 4, pp. 2153–2160. https://doi.org/10.5194/amt-4-2153-2011

    Article  Google Scholar 

  39. Yoshiki, M., “Energy enhancements of gravity waves in the Antarctic lower stratosphere associated with variations in the polar vortex and tropospheric disturbances,” J. Geophys. Res., 2004, vol. 109, p. D23104. https://doi.org/10.1029/2004JD004870

    Article  Google Scholar 

  40. Schmidt, T., de la Torre, A., and Wickert, J. “Global gravity wave activity in the tropopause region from CHAMP radio occultation data,” Geophys. Res. Lett., 2008, vol. 35, p. L16807. https://doi.org/10.1029/2008GL034986

    Article  Google Scholar 

  41. Alexander, S.P. and Tsuda, T., “Observations of the diurnal tide during seven intensive radiosonde campaigns in Australia and Indonesia,” J. Geophys. Res.: Atmos. 2008, vol. 113, p. D04109. https://doi.org/10.1029/2007JD008717

    Article  Google Scholar 

  42. Sofieva, V.F., Dalaudier, F., Kivi, R., and Kyrö, E., “On the variability of temperature profiles in the stratosphere: implications for validation,” Geophys. Res. Lett., 2008, vol. 35, p. L23808. https://doi.org/10.1029/2008GL035539

    Article  Google Scholar 

  43. Tsuda, T., Ratnam, M.V., May, P.T., Alexander, M.J., Vincent, R.A., and MacKinnon, A., “Characteristics of gravity waves with short vertical wavelengths observed with radiosonde and GPS occultation during DAWEX (Darwin Area Wave Experiment),” J. Geophys. Res. 2004, vol. 109, p. D20S03. https://doi.org/10.1029/2004JD004946

    Article  Google Scholar 

  44. Dalaudier, F., Sofieva, V.F., Hauchecorne, A., Kyrölä, E., Blanot, L., Guirlet, M., Retscher, C., and Zehner, C., in Proc. First Atmos. Sci. Conf. (Frascati, Italy, 8–12 May 2006).

  45. Sofieva, V.F., Dalaudier, F., Hauchecorne, A., and Kan, V., “High-resolution temperature profiles retrieved from bichromatic stellar scintillation measurements by GOMOS/Envisat,” Atmos. Meas. Tech., 2019, vol. 12, pp. 585–598. https://doi.org/10.5194/amt-12-585-2019

    Article  Google Scholar 

  46. Belloul, M.B. and Hauchecorne, A., “Effect of periodic horizontal gradients on the retrieval of atmospheric profiles from occultation measurements,” Radio Sci., 1997, vol. 32, no. 2, pp. 469–478.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

V.F. Sofieva thanks the Academy of Finland (The Finnish Centre of Excellence in Inverse Problems and the TT-AVA project).

Funding

V. Kan, M. E. Gorbunov, and O. V. Fedorova are grateful for support from the Russian Foundation for Basic Research (grant no. 20-05-00189 A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kan.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, V., Gorbunov, M.E., Fedorova, O.V. et al. Latitudinal Distribution of the Parameters of Internal Gravity Waves in the Atmosphere Derived from Amplitude Fluctuations of Radio Occultation Signals. Izv. Atmos. Ocean. Phys. 56, 564–575 (2020). https://doi.org/10.1134/S0001433820060055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820060055

Keywords:

Navigation