Skip to main content
Log in

Specific Heat of Liquid Zirconium Carbide ZrC0.95 at Temperatures up to 5000 K

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

The article presents a brief review of works on the refinement of the Zr–C phase diagram: the parameters of the solidus and liquidus lines, the temperature and composition of congruently melting carbide, and the ZrC–C eutectic temperature. We consider the experimental data on the heat of fusion and the specific heat of liquid ZrCx obtained by electrical pulse heating (previously presented only in graphical form). The Ср(Т) curve is numerically processed, and an equation is presented that approximates the temperature dependence of the specific heat of liquid zirconium carbide ZrCх ([C]/[Zr] = 0.95) from the melting point at 3840 K to 5000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Knyazkov, A.M., Kurbakov, S.D., Savvatimskiy, A.I., Sheindlin, M.A., and Yanchuk, V.I., High Temp.—High Pressures, 2011, vol. 40, nos. 3–4, p. 349.

    Google Scholar 

  2. Onufriev, S.V., Savvatimskii, A.I., and Yanchuk, V.I., Meas. Tech., 2011, vol. 54, no. 8, p. 926.

    Article  Google Scholar 

  3. Kondratyev, A., Muboyajan, S., Onufriev, S., and Savvatimskiy, A., J. Alloys Compd., 2015, vol. 631, p. 52.

    Article  Google Scholar 

  4. Savvatimskiy, A.I., Onufriev, S.V., and Muboyadzhyan, S.A., J. Mater. Res., 2017, vol. 32, no. 7, p. 1287.

    Article  ADS  Google Scholar 

  5. Savvatimskiy, A.I., Onufriev, S.V., Muboyadzhyan, S.A., and Seredkin, N.N., J. Phys.: Conf. Ser., 2017, 012318.

  6. Savvatimskiy, A.I., Onufriev, S.V., Muboyadzhyan, S.A., and Tsygankov, P.A., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 4, p. 363.

    Article  Google Scholar 

  7. Onufriev, S.V. and Savvatimskiy, A.I., High Temp., 2018, vol. 56, no. 5, p. 678.

    Article  Google Scholar 

  8. Sara, R.V., J. Am. Ceram. Soc., 1965, vol. 48, no. 5, p. 9.

    Google Scholar 

  9. Storms, E.K. and Griffin, J., High Temp. Sci., 1973, vol. 5, p. 291.

    Google Scholar 

  10. Guillermet, A.F., J. Alloys Compd., 1995, vol. 217, no. 1, p. 69.

    Article  Google Scholar 

  11. Hugosson, H.W., Jansson, U., Johansson, B., and Eriksson, O., Chem. Phys. Lett., 2001, vol. 333, p. 444.

    Article  ADS  Google Scholar 

  12. Jackson, H.F., Jayaseelan, D.D., Manara, D., Casoni, C.P., and Lee, W.E., J. Am. Ceram. Soc., 2011, vol. 94, no. 10, p. 3561.

    Article  Google Scholar 

  13. Jackson, HF. and Lee, W.E., in Comprehensive Nuclear Materials, Konings, R., Ed., Amsterdam: Elsevier, 2012, p. 339.

    Google Scholar 

  14. Katoh, Y., Vasudevamurthy, G., Nozawa, T., and Snead, L.L., J. Nucl. Mater., 2013, vol. 441, p. 718.

    Article  ADS  Google Scholar 

  15. Brykin, M.V., High Temp., 2015, vol. 53, no. 6, p. 810.

    Article  Google Scholar 

  16. Harrison, R.W. and Lee, W.E., Adv. Appl. Ceram., 2016, vol. 115, no. 5, p. 294.

    Article  Google Scholar 

  17. Okamoto, H., in Binary Alloy Phase Diagrams, Massalski, T.B., Ed., Materials park, OH: ASM Int., 1990, 2nd ed., vol. 1, p. 899.

    Google Scholar 

  18. Toth, L.E., in Transition Metal Carbides and Nitrides, Margrave, J.L., Ed., New York: Academic, 1971.

    Google Scholar 

  19. Jackson, H.F., Jayaseelan, D.D., Lee, W.E., Reece, M.J., Inam, F., Manara, D., Perinetti-Casoni, C., Bruycker, F., and Boboridis, K., Int. J. Appl. Ceram. Technol., 2010, vol. 7, no. 3, p. 316.

    Article  Google Scholar 

  20. Manara, D., Jackson, H.F., Perinetti-Casoni, C., Boboridis, K., Welland, M.J., Luzzi, L., Ossi, P.M., and Lee, W.E., J. Eur. Ceram. Soc., 2013, vol. 33, p. 1349.

    Article  Google Scholar 

  21. Bgasheva, T., Brykin, M., Falyakhov, T., and Sheindlin, M., in Proc. Calphad XLIV: Int. Conf. on Computer Coupling of Phase Diagrams and Thermochemistry, Loano, Italy, 2015.

  22. Sheindlin, M.A, Vasin, A.A., Petukhov, S.V., Falyakhov, T.M., and Frolov, A.M., in Mater. III Vserossiisk. konf. “Impul’snaya sil’notochnaya vakuumnaya i poluprovodnikovaya elektronika 20l7” (Proc. III All-Russ. Conf. on Pulse Power-Current Vacuum and Semiconductor Electronics 2017), Moscow, 2017.

  23. Sheindlin, M., Falyakhov, T., Petukhov, S., Valyano, G., and Vasin, A., Adv. Appl. Ceram., 2018, vol. 117, no. 51, p. 548.

    Article  Google Scholar 

  24. Hartmann, J., Phys. Rep., 2009, vol. 469, p. 205.

    Article  ADS  Google Scholar 

  25. Riethof, T., Acchione, B.D., and Branyan, E.R., in Temperature, Its Measurement and Control in Science and Industry, Dahl, A.I., Ed., New York: Reinhold, 1962, vol. 3, p. 515.

    Google Scholar 

  26. Rempel, S.V. and Gusev, A.I., Inorg. Mater., 2001, vol. 37, no. 10, p. 1024.

    Article  Google Scholar 

  27. Woolliams, E.R., Machin, G., Lowe, D.H., and Winkler, R., Metrologia, 2006, vol. 43, p. 11.

    Article  ADS  Google Scholar 

  28. Sapritsky, V.I., Khlevnoy, B.B., Khromchenko, V.B., Ogarev, S.A., Samoylov, M.I., and Pikalev, Y.A., Temp. Meas. Control Sci. Ind., AIP Conf. Proc., 2003, vol. 7, no. 1, p. 273.

    Article  ADS  Google Scholar 

  29. Onufriev, S.V., Savvatimskiy, A.I., and Kondratyev, A.M., High Temp.—High Pressures, 2014, vol. 43, nos. 2–3, p. 217.

    Google Scholar 

  30. Savvatimskii, A.I. and Korobenko, V.N., Vysokotemperaturnye svoistva metallov atomnoi energetiki (tsirkonii, gafnii i zhelezo pri plavlenii i v zhidkom sostoyanii) (High-Temperature Properties of Metals for Nuclear Energy (Zirconium, Hafnium and Iron, under Melting and in Liquid State)), Moscow: Mosk. Energ. Inst., 2012.

  31. Barin, I., Thermochemical Data of Pure Substances, New York: Wiley, 1995, 3rd ed., p. 1885.

    Book  Google Scholar 

  32. Chase, M.W., Jr., NIST-JANAF: Thermochemical Tables, 4th ed., J. Phys. Chem. Ref. Data, 1998, no. 9.

  33. Wang, C.C., Akbar, S.A., Chen, W., and Patton, V.D., J. Mater. Sci., 1995, vol. 30, p. 1627.

    Article  ADS  Google Scholar 

  34. Schick, H.L., Thermodynamics of Certain Refractory Compounds, New York: Academic, 1966, vols. I and II.

    Google Scholar 

  35. Onufriev, S.V., Savvatimskiy, A.I., and Muboyad-zhyan, S.A., Mater. Res. Express, 2019, vol. 6, 125554.

    Article  Google Scholar 

  36. Bolgar, A.S., Turchanin, A.G., and Fesenko, V.V., Termodinamicheskie svoistva karbidov (Thermodynamic Properties of Carbides), Kiev: Naukova Dumka, 1973.

  37. Turchanin, A.G., Zh. Fiz. Khim., 1980, vol. 54, no. 11, p. 2962.

    Google Scholar 

  38. Lebedev, S.V. and Khaikin, S.E., Zh. Eksp. Teor. Fiz., 1954, vol. 26, no. 6, p. 723.

    Google Scholar 

  39. Lebedev, S.V. and Savvatimskii, A.I., Sov. Phys. Usp., 1984, vol. 27, no. 10, p. 749.

    Article  ADS  Google Scholar 

  40. Lebedev, S.V., Zh. Eksp. Teor. Fiz., 1957, vol. 32, no. 2, p. 199.

    Google Scholar 

  41. Frenkel’, Ya.I., Vvedenie v teoriyu metallov (Introduction to the Theory of Metals), Leningrad: Nauka, 1972, p. 424.

  42. Frenkel’, Ya.I., Kineticheskaya teoriya zhidkostei (Kinetic theory of liquids), Leningrad: Nauka, 1975, p. 592.

  43. Onufriev, S.V. and Savvatimskiy, A.I., High Temp., 2016, vol. 54, no. 4, p. 510.

    Article  Google Scholar 

  44. Savvatimskiy, A.I., Onufriev, S.V., and Kondratyev, A.M., Carbon, 2016, vol. 98, p. 534.

    Article  Google Scholar 

  45. Savvatimskii, A.I., Plavlenie grafita i svoistva zhidkogo ugleroda (Melting Graphite and Properties of Liquid Carbon), Moscow: Fizmatkniga. 2014, p. 257.

  46. Savvatimskiy, A.I., Onufriev, S.V., Muboyadzhyan, S.A., Seredkin, N.N., and Konyukhov, S.A., High Temp., 2017, vol. 55, no. 5, p. 825.

    Article  Google Scholar 

  47. Onufriev, S.V., Kondratiev, A.M., Savvatimskiy, A.I., Val’yano, G.E., and Muboyajyan, S.A., High Temp., 2015, vol. 53, no. 3, p. 455.

    Article  Google Scholar 

  48. Ubbelohde, A.R., Melting and Crystal Structure, Oxford: Oxford Univ. Press, 1965.

    Google Scholar 

  49. Savvatimskiy, A.I. and Onufriev, S.V., Phys. At. Nucl., 2016, vol. 79, p. 1637.

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 19-08-00093.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Aristova or S. V. Onufriev.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristova, N.M., Onufriev, S.V. & Savvatimskiy, A.I. Specific Heat of Liquid Zirconium Carbide ZrC0.95 at Temperatures up to 5000 K. High Temp 58, 681–688 (2020). https://doi.org/10.1134/S0018151X20050016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20050016

Navigation