Skip to main content
Log in

Self-Organized Criticality in the Autowave Model of Speciation

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Self-organized criticality is considered as a threshold stage of autowave self-organization in the evolutionary process. The proposed model defines self-organized criticality as a set of threshold parameters of the autowave system of equations. Consequently, it is associated with the formation of a qualitatively new biological structure (a new species). Experimental data on the mutation rate for groups of mice and unicellular eukaryotes that are published in the scientific literature are used to construct an autowave model of speciation at the population level. This model approach demonstrates compliance with the available experimental data in the process of fixing recessive mutations: there are three stages of fixation of mutations (accumulation of phenotypic differences, the threshold level of the mutation rate, and elimination of mutation carriers) and the maximum mutation rate when the mismatch repair system and the DNA polymerase \(\delta\) proofreading activity are disabled. The percolation model of mutations with a delayed mutation rate is used to analyze the dynamics of the number of mutants in generations. The results demonstrate exact correspondence between the use of autowave model and percolation model of mutation fixation for calculating and analyzing the dynamics of the mutation rate and the number of mutation carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38, 364 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Tamura, S. Tanaka, and N. Kawashima, in Interface Between Quantum Information and Statistical Physics, Proceedings of the Symposium, Japan, Nov. 10–12, 2011, Vol. 7 of Kinki Univ. Series on Quantum Computing (2012), p. 215.

  3. J. Hesse and T. Gross, Front. Syst. Neurosci. 8, 166 (2014).

    Article  Google Scholar 

  4. C. Meisel, A. Storch, S. Hallmeyer-Elgner, et al., PLoS Comput. Biol. 8, e1002312 (2012).

    Article  Google Scholar 

  5. C. Bédard, H. Kröger, and A. Destexhe, Phys. Rev. Lett. 97 (11) (2006).

  6. H. J. Jensen, Self-Organized Criticality (Cambridge Univ. Press, Cambridge, 1998).

    Book  MATH  Google Scholar 

  7. D. Sornette, A. Johansen, and I. Dornic, J. Phys. I (France) 5, 325 (1995).

    Article  Google Scholar 

  8. P. Bak, How Nature Works (Springer, New York, 1996).

    Book  MATH  Google Scholar 

  9. M. Bartolozzi, D. B. Leinweber, and A. W. Thomas, Phys. A (Amsterdam, Neth.) 350, 451 (2005).

  10. L. Cocchi, L. L. Gollo, A. Zalesky, and M. Breakspear, Prog. Neurobiol. 158, 132 (2017).

    Article  Google Scholar 

  11. J. M. Beggs and D. Plenz, J. Neurosci. 23, 11167 (2003).

    Article  Google Scholar 

  12. D. Marković and C. Gros, Phys. Rep. 536 (2), 41 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  13. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).

    Article  ADS  Google Scholar 

  14. P. Bak, Phys. A (Amsterdam, Neth.) 163, 403 (1990).

  15. Z. Olami, H. J. S. Feder, and K. Christensen, Phys. Rev. Lett. 68, 1244 (1992).

    Article  ADS  Google Scholar 

  16. R. Burridge and L. Knopoff, Bull. Seismol. Soc. Am. 57, 341 (1967).

    Google Scholar 

  17. S. Hergarten and H. J. Neugebauer, Phys. Rev. Lett. 88 (23) (2002).

  18. S. Lise and M. Paczuski, Phys. Rev. E 63 (3) (2001).

  19. S. Lise and M. Paczuski, Phys. Rev. E 64 (4) (2001).

  20. L. de Arcangelis, C. Godano, J. R. Grasso, and E. Lippiello, Phys. Rep. 628, 1 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  21. B. Drossel and F. Schwabl, Phys. Rev. Lett. 69, 1629 (1992).

    Article  ADS  Google Scholar 

  22. P. Bak, K. Chen, and C. Tang, Phys. Lett. A 147, 297 (1990).

    Article  ADS  Google Scholar 

  23. P. Grassberger and H. Kantz, J. Stat. Phys. 63, 685 (1991).

    Article  ADS  Google Scholar 

  24. W. K. Moßner, B. Drossel, and F. Schwabl, Phys. A (Amsterdam, Neth.) 190, 205 (1992).

  25. P. Bak and K. Sneppen, Phys. Rev. Lett. 71, 4083 (1993).

    Article  ADS  Google Scholar 

  26. S. J. Gould and N. Eldredge, Paleobiology 3, 115 (1977).

    Article  Google Scholar 

  27. A. V. Podlazov, The Future of Applied Mathematics: Lectures for Young Researchers, Ed. by G.G. Malinetskii (Editorial URSS, Moscow, 2005), pp. 404–426 [in Russian].

    Google Scholar 

  28. P. Bak and M. Paczuski, Lect. Notes Phys. 480, 341 (1997).

  29. A. Uchimura, M. Higuchi, Y. Minakuchi, et al., Genome Res. 25, 1125 (2015).

    Article  Google Scholar 

  30. A. J. Herr, M. Ogawa, N. A. Lawrence, et al., PLoS Genet. 7, e1002282 (2011).

    Article  Google Scholar 

  31. A. J. Herr, S. R. Kennedy, G. M. Knowels, et al., Genetics 196, 677 (2014).

    Article  Google Scholar 

  32. B. Alberts, A. Johnson, J. Lewis, et al., Molecular Biology of the Cell (Garland Science, New York, 2017).

  33. P. M. J. Burgers, J. Biol. Chem. 284, 4041 (2008).

    Article  Google Scholar 

  34. M. J. Prindle and L. A. Loeb, Environ. Mol. Mutagen. 53, 666 (2012).

    Article  Google Scholar 

  35. R. E. Johnson, R. Klassen, L. Prakash, and S. Prakash, Mol. Cell. 59, 163 (2015).

    Article  Google Scholar 

  36. U. Hübscher, G. Maga, and S. Spadari, Ann. Rev. Biochem. 71, 133 (2002).

    Article  Google Scholar 

  37. M. Banach-Orlowska, I. J. Fijalkowska, R. M. Schaaper, and P. Jonczyk, Mol. Microbiol. 58, 61 (2005).

    Article  Google Scholar 

  38. M. Lynch, M. S. Ackerman, J.-F. Gout, et al., Nat. Rev. Genet. 17, 704 (2016).

    Article  Google Scholar 

  39. A. Morrison, A. L. Johnson, L. H. Johnston, and A. Sugino, EMBO J. 12, 1467 (1993).

    Article  Google Scholar 

  40. T. M. Albertson, M. Ogawa, J. M. Bugni, et al., Proc. Natl. Acad. Sci. U. S. A. 106, 17101 (2009).

    Article  ADS  Google Scholar 

  41. L. Li, K. M. Murphy, U. Kanevets, L. J. Reha-Krantz, Genetics 170, 569 (2005).

    Article  Google Scholar 

  42. S. A. Nick McElhinny, D. A. Gordenin, C. M. Stith, et al., Mol. Cell. 30, 137 (2008).

    Article  Google Scholar 

  43. C. N. Greene and S. Jinks-Robertson, Genetics 159, 65 (2001).

    Google Scholar 

  44. H. T. Tran, D. A. Gordenin, and M. A. Resnick, Mol. Cell. Biol. 19, 2000 (1999).

    Article  Google Scholar 

  45. I. J. Fijalkowska and R. M. Schaapert, Genetics 93, 2856 (1996).

    Google Scholar 

  46. L. N. Williams, A. J. Herr, and B. D. Preston, Genetics 193, 751 (2013).

    Article  Google Scholar 

  47. D. M. Wloch, K. Szafraniec, R. H. Borts, and R. Korona, Genetics 159, 441 (2001).

    Google Scholar 

  48. J.-Y. Leu, S.-L. Chang, J.-C. Chao, et al., Nat. Ecol. Evolut. 4, 453 (2020).

    Article  Google Scholar 

  49. N. N. Pouchkina-Stantcheva, B. M. McGee, C. Boschetti, et al., Science (Washington, DC, U. S.) 318 (5848), 268 (2007).

    Article  ADS  Google Scholar 

  50. D. A. Thompson, M. M. Desai, and A. W. Murray, Curr. Biol. 16, 1581 (2006).

    Article  Google Scholar 

  51. A. Sidorova, N. Levashova, A. Garaeva, and V. Tverdislov, Biosystems 193–194, 104120 (2020).

    Article  Google Scholar 

  52. A. Ya. Garaeva, A. E. Sidorova, N. T. Levashova, and V. A. Tverdislov, Biophysics 65, 522 (2020).

    Article  Google Scholar 

  53. M. Nei and Y. Imaizumi, Heredity 21, 183 (1966).

    Article  Google Scholar 

  54. B. Charlesworth, Nat. Rev. Genet. 10, 195 (2009).

    Article  Google Scholar 

  55. V. Grant, Organismic Evolution (W. H. Freeman, San Francisco, 1977).

    Google Scholar 

  56. W. Ebeling, A. Engel, and R. Feistel, Physik der Evolutionsprozesse, 2nd ed. (Akademie, Berlin, 1992).

    MATH  Google Scholar 

  57. R. Feistel and W. Ebeling, Physics of Self-Organization and Evolution (Wiley-VCH, Weinheim, Germany, 2011).

    Book  MATH  Google Scholar 

  58. A. Uchimura, Y. Hidaka, T. Hirabayashi, et al., PLoS One 4, e4184 (2009).

    Article  ADS  Google Scholar 

  59. M. F. Lyon, Heredity 13, 341 (1959).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-01-00327.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Sidorova.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garaeva, A.Y., Sidorova, A.E., Levashova, N.T. et al. Self-Organized Criticality in the Autowave Model of Speciation. Moscow Univ. Phys. 75, 398–408 (2020). https://doi.org/10.3103/S0027134920050124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134920050124

Keywords:

Navigation