Skip to main content
Log in

The Spectral Decomposition of the Solution of the Problem of Generating Galactic Magnetic Fields in the No-z Approximation

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

One of the most popular models for the generation of magnetic fields in galaxies is the no-\(z\) approximation in dynamo theory. It allows one to reduce the problem of the evolution of the magnetic field to solving a system of two equations for components that lie in the plane of the galactic disk. Usually, the study of such problems is carried out numerically. Moreover, in some cases, this system of equations gives us an opportunity to find an analytical solution, which makes it possible to answer a number of important fundamental questions. In this paper, a spectral decomposition of the solution of the corresponding problem is presented and the critical values of the dynamo numbers for various modes of the solution are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. R. Beck, A. Brandenburg, D. Moss, A. Shukurov, and D. Sokoloff, Ann. Rev. Astron. Astrophys. 34, 155 (1996).

    Article  ADS  Google Scholar 

  2. T. Arshakian, R. Beck, M. Krause, and D. Sokoloff, Astron. Astrophys. 494, 21 (2009).

    Article  ADS  Google Scholar 

  3. R. Beck, L. Chamandy, E. Elson, and E. G. Blackman, Galaxies 8, 4 (2019).

    Article  ADS  Google Scholar 

  4. N. G. Bochkarev, Magnetic Fields in Space (Librokom, Moscow, 2011) [in Russian].

    Google Scholar 

  5. E. Fermi, Phys. Rev. 75, 1169 (1949).

    Article  ADS  Google Scholar 

  6. H. Alfven and N. Herlofson, Phys. Rev. 78, 616 (1950).

    Article  ADS  Google Scholar 

  7. V. Ginzburg, IAU Symp. 9, 589 (1959).

  8. V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Fizmatlit, Moscow, 1960; Addison Wesley, London, 1970).

  9. Ya. B. Zel’dovich, A. A. Ruzmaikin, and D. D. Sokolov, Magnetic Fields in Astrophysics (Gordon and Breach, New York, 1983; Inst. Komp. Issled., Moscow, 2006).

  10. R. N. Manchester, Astrophys. J. 172, 43 (1972).

    Article  ADS  Google Scholar 

  11. M. A. Brentjens and A. G. de Bruyn, Astron. Astrophys. 441, 1217 (2005).

    Article  ADS  Google Scholar 

  12. C. L. van Eck, J. C. Brown, A. Shukurov, and A. Fletcher, Astrophys. J. 799, 35 (2015).

    Article  ADS  Google Scholar 

  13. R. R. Andreasyan, E. A. Mikhailov, and A. R. Andreasyan, Astron. Rep. 64, 189 (2020).

    Article  ADS  Google Scholar 

  14. R. Beck, Astron. Astrophys. 106, 121 (1982).

    ADS  Google Scholar 

  15. D. S. Mathewson, P. C. van der Kruit, and W. N. Brouw, Astron. Astrophys. 17, 468 (1972).

    ADS  Google Scholar 

  16. H. Moffat, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge Univ. Press, London, 1978).

    Google Scholar 

  17. E. Parker, Cosmical Magnetic Fields (Claredon, Oxford, 1979).

    Google Scholar 

  18. D. D. Sokoloff, Phys. Usp. 58, 601 (2015).

    Article  ADS  Google Scholar 

  19. K. Subramanian and L. Mestel, Mon. Not. R. Astron. Soc. 265, 69 (1993).

    Google Scholar 

  20. D. Moss, Mon. Not. R. Astron. Soc. 275, 191 (1995).

    Article  ADS  Google Scholar 

  21. A. Phillips, Geophys. Astrophys. Fluid. Dyn. 94, 135 (2001).

    Article  ADS  Google Scholar 

  22. D. Moss, D. Sokoloff, and V. Suleimanov, Astron. Astrophys. 588, A18 (2016).

    Article  ADS  Google Scholar 

  23. E. A. Mikhailov, D. D. Sokoloff, and Yu. N. Efremov, Astron. Lett. 38, 543 (2012).

    Article  ADS  Google Scholar 

  24. D. Moss, Astron. Geophys. 53, 5.23 (2012).

  25. E. A. Mikhailov, Astron. Lett. 40, 398 (2014).

    Article  ADS  Google Scholar 

  26. D. Moss and D. Sokoloff, Astron. Astrophys. 598, A72 (2017).

    Article  ADS  Google Scholar 

  27. V. A. Sadovnichii, Operator Theory (Mosk. Gos. Univ., Moscow, 1986) [in Russian].

    Google Scholar 

  28. A. G. Sveshnikov, A. N. Bogolyubov, and V. V. Kravtsov, Lectures on Mathematical Physics (Mosk. Gos. Univ., Moscow, 1993) [in Russian].

    MATH  Google Scholar 

  29. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Moscow, 1999; Dover, New York, 2011).

  30. E. A. Mikhailov and V. V. Pushkarev, Astrophys. Bull. 73, 425 (2018).

    Article  ADS  Google Scholar 

  31. F. Krauze and K.-H. Rädler, Mean Field Electrodynamics and Dynamo Theory (Pergamon, Oxford, 1980).

    Google Scholar 

  32. R. Beck, Astron. Astrophys. 470, 539 (2007).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to D. D. Sokolov for discussing this article.

Funding

This work was supported by the RFBR (grant no. 18-02-00085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Mikhailov.

Additional information

Translated by T. Sokolova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, E.A. The Spectral Decomposition of the Solution of the Problem of Generating Galactic Magnetic Fields in the No-z Approximation. Moscow Univ. Phys. 75, 420–426 (2020). https://doi.org/10.3103/S0027134920050173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134920050173

Keywords:

Navigation