Skip to main content
Log in

The Influence of the Asymmetry of the Geometry of a Core–Shell Particle on a Substrate on the Optical Characteristics Accounting for Spatial Dispersion

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The problem of excitation of a core–shell particle located on a transparent substrate by a field of an evanescent electromagnetic wave is considered. The particle consists of a dielectric core with a metal nanoplasmonic shell in which spatial dispersion occurs. Based on the Discrete Sources Method, a model has been constructed that considers the influence of the presence of the substrate and nonlocality in a metal on the optical scattering characteristics. The effect of the asymmetry of the particle geometry on the optical characteristics of the near field has been investigated. It was found that the asymmetry of the particle geometry significantly affects the intensity enhancement coefficient, as well as the absorption cross-section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. D. Xu, X. Xiong, L. Wu, et al., Adv. Opt. Photon. 10, 703 (2018). https://doi.org/10.1364/AOP.10.000703

    Article  Google Scholar 

  2. S. Zhang, R. Geryak, J. Geldmeier, S. Kim, and V. V. Tsukruk, Chem. Rev. 117, 12942 (2017). https://doi.org/10.1021/acs.chemrev.7b00088

    Article  Google Scholar 

  3. H.-P. Feng, L. Tang, G.-M. Zeng, et al., Adv. Colloid Interface Sci. 267, 26 (2019). https://doi.org/10.1016/j.cis.2019.03.001

    Article  Google Scholar 

  4. P. K. Kalambate, Dhanjai, Z. Huang, Y. Li, et al., Trends Anal. Chem. 115, 147 (2019). https://doi.org/10.1016/j.trac.2019.04.002

    Article  Google Scholar 

  5. S. Rajkumar and M. Prabaharan, Colloids Surf., B 174, 252 (2019). https://doi.org/10.1016/j.colsurfb.2018.11.004

    Article  Google Scholar 

  6. V. I. Balykin, Phys. Usp. 61, 846 (2018). https://doi.org/10.3367/UFNr.2017.09.038206

    Article  ADS  Google Scholar 

  7. H.-P. Solowan and C. Kryschi, Condens. Matter 2, 8 (2017). https://doi.org/10.3390/condmat2010008

    Article  Google Scholar 

  8. I. Sidorenko, Sh. Nizamov, R. Hergenrtsder, A. Zybin, et al., Microchim. Acta 183, 101 (2016). https://doi.org/10.1007/s00604-015-1599-0

    Article  Google Scholar 

  9. D. Avşar, H. Ertürk, and M. P. Mengüз, Mater. Res. Express 6, 065006 (2019). https://doi.org/10.1088/2053-1591/ab07fd

    Article  ADS  Google Scholar 

  10. M. Barbry, P. Koval, F. Marchesin, R. Esteban, et al., Nano Lett. 15, 3410 (2015). https://doi.org/10.1021/acs.nanolett.5b00759

    Article  ADS  Google Scholar 

  11. C. David and F. J. Garc!na de Abajo, J. Phys. Chem. C 115, 19470 (2011). https://doi.org/10.1021/jp204261u

    Article  Google Scholar 

  12. C. Ciraci, J. B. Pendry, and D. R. Smith, Chem. Phys. Chem. 14, 1109 (2013). https://doi.org/10.1002/cphc.201200992

    Article  Google Scholar 

  13. A. Derkachova, K. Kolwas, and I. Demchenko, Plasmonics 11, 941 (2016). https://doi.org/10.1007/s11468-015-0128-7

    Article  Google Scholar 

  14. N. A. Mortensen, S. Raza, M. Wubs, T. Söndergaard, and S. I. Bozhevolnyi, Nat. Commun. 5, 3809 (2014). https://doi.org/10.1038/ncomms4809

    Article  ADS  Google Scholar 

  15. M. Wubs and A. Mortensen, in Quantum Plasmonics, Ed. by S. I. Bozhevolnyi et al. (Springer, Switzerland, 2017), pp. 279–302. https://doi.org/10.1007/978-3-319-45820-5_12

  16. C. Tserkezis, A. T. M. Yeşilyurt, J.-S. Huang, and N. A. Mortensen, ACS Photon. 5, 5017 (2018). https://doi.org/10.1021/acsphotonics.8b01261

  17. Yu. A. Eremin and A. G. Sveshnikov, Mosc. Univ. Phys. Bull. 73, 475 (2018). https://doi.org/10.3103/S0027134918050089

    Article  ADS  Google Scholar 

  18. A. Doicu, Yu. Eremin, and T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic, San Diego, 2000).

    MATH  Google Scholar 

  19. Yu. A. Eremin and A. G. Sveshnikov, Mosc. Univ. Phys. Bull. 74, 262 (2019). https://doi.org/10.3103/S0027134919030068

    Article  ADS  Google Scholar 

  20. A. G. Sveshnikov, Dokl. Math. 101, 20 (2020).

    Article  Google Scholar 

  21. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1978; Pergamon, Oxford, 1981).

  22. A. Doicu, Yu. Eremin, and T. Wriedt, J. Quant. Spectrosc. Rad. Trans. 242, 106756 (2020). https://doi.org/10.1016/j.jqsrt.2019.106756

    Article  Google Scholar 

  23. C. Jerez-Hanckes and J. C. Nidilec, Commun. Comput. Phys. 11, 629 (2012). https://doi.org/10.4208/cicp.231209.150910s

    Article  MathSciNet  Google Scholar 

  24. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964).

    MATH  Google Scholar 

  25. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).

    Article  ADS  Google Scholar 

  26. M. Kupresak, X. Zheng, G. A. E. Vandenbosch, and V. V. Moshchalkov, Adv. Theory Simul., 1800076 (2018). https://doi.org/10.1002/adts.201800076

  27. T. Dong, Y. Shi, H. Liu, F. Chen, et al., J. Phys. D: Appl. Phys. 50, 495302 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Moscow Center for Fundamental and Applied Mathematics (project: ‘‘The modeling of elements of a plasmonic nanolaser considering quantum nonlocality.’’)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Eremin or A. G. Sveshnikov.

Additional information

Translated by D. Churochkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremin, Y.A., Sveshnikov, A.G. The Influence of the Asymmetry of the Geometry of a Core–Shell Particle on a Substrate on the Optical Characteristics Accounting for Spatial Dispersion. Moscow Univ. Phys. 75, 480–487 (2020). https://doi.org/10.3103/S0027134920050100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134920050100

Keywords:

Navigation