Skip to main content
Log in

Multiple-Band Andreev Transport in Optimally Doped Superconducting Oxypnictides

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Using multiple Andreev reflections (MAR) effect spectroscopy of SnS junctions, we directly determine temperature dependences of the superconducting order parameters, excess Andreev current, and zero-bias conductance (ZBC) in polycrystalline samples of superconducting oxypnictides Sm0.7Th0.3OFeAs and NdO0.6H0.36FeA with almost optimal critical temperatures. It is shown that the results obtained are self-consistent and could be described in the framework of a two-band model. We estimate a dominating contribution 70–85% of the bands with the large gap to the total conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, J. Am. Chem. Soc. 128, 10012 (2006).

    Article  Google Scholar 

  2. Q. Si, R. Yu, and E. Abrahams, Nat. Rev. Mater. 1, 16017 (2016).

    Article  ADS  Google Scholar 

  3. P. J. Hirschfeld, C. R. Phys. 17, 197 (2016).

    Article  ADS  Google Scholar 

  4. H. Hosono, A. Yamamoto, H. Hiramatsu, and Y. Ma, Mater. Today 21, 278 (2018).

    Article  Google Scholar 

  5. A. Kreisel, P. J. Hirschfeld, and B. M. Andersen, Symmetry 12, 1402 (2020).

    Article  Google Scholar 

  6. M. V. Sadovskii, JETP Lett. 109, 166 (2019).

    Article  ADS  Google Scholar 

  7. A. L. Rakhmanov, K. I. Kugel’, M. Yu. Kagan, A. V. Rozhkov, and A. O. Sboichakov, JETP Lett. 105, 806 (2017).

    Article  ADS  Google Scholar 

  8. I. A. Nekrasov and N. S. Pavlov, JETP Lett. 108, 623 (2018).

    Article  ADS  Google Scholar 

  9. A. Martinelli, F. Bernardini, and S. Massidda, C. R. Phys. 17, 5 (2016).

    Article  ADS  Google Scholar 

  10. K. Kobayashi, J. Yamaura, S. Iimura, S. Maki, H. Sagayama, R. Kumai, Y. Murakami, H. Takahashi, S. Matsuishi, and H. Hosono, Sci. Rep. 6, 39646 (2016).

    Article  ADS  Google Scholar 

  11. N. Fujiwara, N. Kawaguchi, S. IImura, S. Matsuishi, and H. Hosono, Phys. Rev. B 96, 140507(R) (2017).

    Article  ADS  Google Scholar 

  12. M. Hiraishi, S. Iimura, K. M. Kojima, et al., Nat. Phys. 10, 300 (2014).

    Article  Google Scholar 

  13. S. Onari, Y. Yamakawa, and H. Kontani, Phys. Rev. Lett. 112, 187001 (2014).

    Article  ADS  Google Scholar 

  14. P. Seidel, Supercond. Sci. Technol. 24, 043001 (2011).

    Article  ADS  Google Scholar 

  15. D. Daghero, M. Tortello, G. A. Ummarino, and R. S. Gonnelli, Rep. Prog. Phys. 74, 124509 (2011).

    Article  ADS  Google Scholar 

  16. G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).

    Article  ADS  Google Scholar 

  17. T. E. Kuzmicheva, S. A. Kuzmichev, M. G. Mikheev, Ya. G. Ponomarev, S. N. Tchesnokov, V. M. Pudalov, E. P. Khlybov, and N. D. Zhigadlo, Phys. Usp. 57, 819 (2014).

    Article  ADS  Google Scholar 

  18. T. E. Kuzmicheva, S. A. Kuzmichev, K. S. Pervakov, V. M. Pudalov, and N. D. Zhigadlo, Phys. Rev. B 95, 094507 (2017).

    Article  ADS  Google Scholar 

  19. T. E. Kuzmicheva and S. A. Kuzmichev, Low Temp. Phys. 45, 1161 (2019).

    Article  ADS  Google Scholar 

  20. S. A. Kuzmichev and T. E. Kuzmicheva, JETP Lett. 105, 671 (2017).

    Article  ADS  Google Scholar 

  21. T. E. Kuzmicheva, S. A. Kuzmichev, and N. D. Zhigadlo, Phys. Rev. B 100, 144504 (2019).

    Article  ADS  Google Scholar 

  22. M. Octavio, M. Tinkham, G. E. Blonder, and T. M. Klapwijk, Phys. Rev. B 27, 6739 (1983).

    Article  ADS  Google Scholar 

  23. G. B. Arnold, J. Low Temp. Phys. 68, 1 (1987).

    Article  ADS  Google Scholar 

  24. D. Averin and A. Bardas, Phys. Rev. Lett. 75, 1831 (1995).

    Article  ADS  Google Scholar 

  25. R. Kümmel, U. Gunsenheimer, and R. Nicolsky, Phys. Rev. B 42, 3992 (1990).

    Article  ADS  Google Scholar 

  26. U. Gunsenheimer and A. D. Zaikin, Phys. Rev. B 50, 6317 (1994).

    Article  ADS  Google Scholar 

  27. U. Gunsenheimer and A. D. Zaikin, EPL 41, 195 (1998).

    Article  ADS  Google Scholar 

  28. Z. Popović, S. A. Kuzmichev, and T. E. Kuzmicheva, J. Appl. Phys. 128, 013901 (2020).

    Article  ADS  Google Scholar 

  29. N. D. Zhigadlo, S. Katrych, S. Weyeneth, R. Puzniak, P. J. W. Moll, Z. Bukowski, J. Karpinski, H. Keller, and B. Batlogg, Phys. Rev. B 82, 064517 (2010).

    Article  ADS  Google Scholar 

  30. N. D. Zhigadlo, J. Cryst. Growth 455, 94 (2016).

    Article  ADS  Google Scholar 

  31. N. D. Zhigadlo, N. Barbero, and T. Shiroka, J. Alloys Compd. 725, 1027 (2017).

    Article  Google Scholar 

  32. J. Moreland and J. W. Ekin, J. Appl. Phys. 58, 3888 (1985).

    Article  ADS  Google Scholar 

  33. S. A. Kuzmichev and T. E. Kuzmicheva, Low Temp. Phys. 42, 1008 (2016).

    Article  ADS  Google Scholar 

  34. T. E. Kuzmicheva, S. A. Kuzmichev, M. G. Mikheev, Ya. G. Ponomarev, S. N. Tchesnokov, Yu. F. Eltsev, V. M. Pudalov, K. S. Pervakov, A. V. Sadakov, A. S. Usoltsev, E. P. Khlybov, and L. F. Kulikova, EPL 102, 67006 (2013).

    Article  ADS  Google Scholar 

  35. Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev, M. V. Sudakova, S. N. Tchesnokov, O. S. Volkova, A. N. Vasiliev, T. Hänke, C. Hess, G. Behr, R. Klingeler, and B. Büchner, Phys. Rev. B 79, 224517 (2009).

    Article  ADS  Google Scholar 

  36. T. E. Kuzmicheva, S. A. Kuzmichev, S. N. Tchesnokov, and N. D. Zhigadlo, J. Supercond. Nov. Magn. 29, 673 (2016).

    Article  Google Scholar 

  37. T. E. Shanygina, S. A. Kuzmichev, M. G. Mikheev, Y. G. Ponomarev, S. N. Tchesnokov, Y. F. Eltsev, V. M. Pudalov, A. V. Sadakov, A. S. Usol’tsev, E. P. Khlybov, and L. F. Kulikova, J. Supercond. Nov. Magn. 26, 2661 (2013).

    Article  Google Scholar 

  38. V. A. Moskalenko, Fiz. Met. Metalloved. 8, 522 (1959).

    Google Scholar 

  39. H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett. 3, 552 (1959).

    Article  ADS  Google Scholar 

  40. S. A. Kuzmichev, T. E. Kuzmicheva, and S. N. Tchesnokov, JETP Lett. 99, 295 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The measurements were partly done using the equipment of the Shared Facility Center, Lebedev Physical Institute.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (topic no. 0023-2019-0005 “Physics of High-Temperature Superconductors and Novel Quantum Materials”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Kuzmicheva.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 8, pp. 523–530.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmicheva, T.E., Kuzmichev, S.A. & Zhigadlo, N.D. Multiple-Band Andreev Transport in Optimally Doped Superconducting Oxypnictides. Jetp Lett. 112, 491–497 (2020). https://doi.org/10.1134/S0021364020200102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020200102

Navigation