Skip to main content
Log in

Higher derivative scalar-tensor monomials and their classification

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We make a full classification of scalar monomials built of the Riemann curvature tensor up to the quadratic order and of the covariant derivatives of the scalar field up to the third order. From the point of view of the effective field theory, the third or even higher order covariant derivatives of the scalar field are of the same importance as the higher curvature terms, and thus should be taken into account. Moreover, the higher curvature terms and the higher order derivatives of the scalar field are complementary to each other, of which novel ghostfree combinations may exist. We make a systematic classification of all the possible monomials, according to the numbers of the Riemann tensor and the higher derivatives of the scalar field in each monomial. A complete basis of monomials at each order is derived, of which the linear combinations may yield novel ghostfree Lagrangians. We also develop diagrammatic representations for the monomials, which may help to simplify the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Woodard, Scholarpedia 10, 32243 (2015).

    Google Scholar 

  2. G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).

    Google Scholar 

  3. A. Nicolis, R. Rattazzi, and E. Trincherini, Phys. Rev. D 79, 064036 (2009), arXiv: 0811.2197.

    ADS  MathSciNet  Google Scholar 

  4. C. Deffayet, X. Gao, D. A. Steer, and G. Zahariade, Phys. Rev. D 84, 064039 (2011), arXiv: 1103.3260.

    ADS  Google Scholar 

  5. T. Kobayashi, M. Yamaguchi, and J. Yokoyama, Prog. Theor. Phys. 126, 511 (2011), arXiv: 1105.5723.

    ADS  Google Scholar 

  6. J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, Phys. Rev. Lett. 114, 211101 (2015), arXiv: 1404.6495.

    ADS  Google Scholar 

  7. J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, J. Cosmol. Astropart. Phys. 2015, 18 (2015), arXiv: 1408.1952.

    Google Scholar 

  8. D. Langlois, and K. Noui, J. Cosmol. Astropart. Phys. 2016, 34 (2016), arXiv: 1510.06930.

    Google Scholar 

  9. H. Motohashi, K. Noui, T. Suyama, M. Yamaguchi, and D. Langlois, J. Cosmol. Astropart. Phys. 2016, 33 (2016), arXiv: 1603.09355.

    Google Scholar 

  10. D. Langlois, Int. J. Mod. Phys. D 28, 1942006 (2019), arXiv: 1811.06271.

    ADS  Google Scholar 

  11. T. Kobayashi, Rep. Prog. Phys. 82, 086901 (2019), arXiv: 1901.07183.

    ADS  Google Scholar 

  12. L. Buoninfante, G. Lambiase, and M. Yamaguchi, Phys. Rev. D 100, 026019 (2019), arXiv: 1812.10105.

    ADS  MathSciNet  Google Scholar 

  13. A. Lue, L. Wang, and M. Kamionkowski, Phys. Rev. Lett. 83, 1506 (1999), arXiv: astro-ph/9812088.

    ADS  Google Scholar 

  14. R. Jackiw, and S. Y. Pi, Phys. Rev. D 68, 104012 (2003), arXiv: gr-qc/0308071.

    ADS  MathSciNet  Google Scholar 

  15. N. Deruelle, M. Sasaki, Y. Sendouda, and A. Youssef, J. High Energy Phys. 9, 9 (2012).

    ADS  Google Scholar 

  16. M. Crisostomi, K. Noui, C. Charmousis, and D. Langlois, Phys. Rev. D 97, 044034 (2018), arXiv: 1710.04531.

    ADS  MathSciNet  Google Scholar 

  17. A. De Felice, D. Langlois, S. Mukohyama, K. Noui, and A. Wang, Phys. Rev. D 98, 084024 (2018).

    ADS  MathSciNet  Google Scholar 

  18. C. Deffayet, G. Esposito-Farése, and A. Vikman, Phys. Rev. D 79, 084003 (2009), arXiv: 0901.1314.

    ADS  Google Scholar 

  19. X. Gao, Phys. Rev. D 90, 081501 (2014), arXiv: 1406.0822.

    ADS  Google Scholar 

  20. X. Gao, Phys. Rev. D 90, 104033 (2014), arXiv: 1409.6708.

    ADS  Google Scholar 

  21. P. Creminelli, M. A. Luty, A. Nicolis, and L. Senatore, J. High Energy Phys. 2006, 80 (2006), arXiv: hep-th/0606090.

    Google Scholar 

  22. C. Cheung, A. L. Fitzpatrick, J. Kaplan, L. Senatore, and P. Creminelli, J. High Energy Phys. 2008, 14 (2008), arXiv: 0709.0293.

    Google Scholar 

  23. P. Hořava, Phys. Rev. D 79, 084008 (2009), arXiv: 0901.3775.

    ADS  MathSciNet  Google Scholar 

  24. D. Blas, O. Pujolás, and S. Sibiryakov, Phys. Rev. Lett. 104, 181302 (2010), arXiv: 0909.3525.

    ADS  MathSciNet  Google Scholar 

  25. P. Creminelli, G. D’Amico, J. Noreña, and F. Vernizzi, J. Cosmol. Astropart. Phys. 2009, 18 (2009), arXiv: 0811.0827.

    Google Scholar 

  26. G. Gubitosi, F. Piazza, and F. Vernizzi, J. Cosmol. Astropart. Phys. 2013, 32 (2013), arXiv: 1210.0201.

    Google Scholar 

  27. J. Bloomfield, É. É. Flanagan, M. Park, and S. Watson, J. Cosmol. Astropart. Phys. 8, 10 (2013), arXiv: 1211.7054.

    ADS  Google Scholar 

  28. J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, J. Cosmol. Astropart. Phys. 8, 25 (2013), arXiv: 1304.4840.

    ADS  Google Scholar 

  29. J. Bloomfield, J. Cosmol. Astropart. Phys. 12, 44 (2013), arXiv: 1304.6712.

    ADS  Google Scholar 

  30. J. Gleyzes, D. Langlois, and F. Vernizzi, Int. J. Mod. Phys. D 23, 1443010 (2014), arXiv: 1411.3712.

    ADS  Google Scholar 

  31. J. Gleyzes, D. Langlois, M. Mancarella, and F. Vernizzi, J. Cosmol. Astropart. Phys. 8, 54 (2015), arXiv: 1504.05481.

    ADS  Google Scholar 

  32. J. Gleyzes, D. Langlois, M. Mancarella, and F. Vernizzi, J. Cosmol. Astropart. Phys. 2, 56 (2016), arXiv: 1509.02191.

    ADS  Google Scholar 

  33. Y. Cai, Y. Wan, H. G. Li, T. Qiu, and Y. S. Piao, J. High Energy Phys. 1, 90 (2017).

    ADS  Google Scholar 

  34. Y. Cai, H. G. Li, T. Qiu, and Y. S. Piao, Eur. Phys. J. C 77, 369 (2017), arXiv: 1701.04330.

    ADS  Google Scholar 

  35. C. Li, Y. Cai, Y. F. Cai, and E. N. Saridakis, J. Cosmol. Astropart. Phys. 10, 1 (2018), arXiv: 1803.09818.

    ADS  Google Scholar 

  36. X. Gao, and Z. B. Yao, J. Cosmol. Astropart. Phys. 5, 24 (2019), arXiv: 1806.02811.

    ADS  Google Scholar 

  37. X. Gao, C. Kang, and Z. B. Yao, Phys. Rev. D 99, 104015 (2019), arXiv: 1902.07702.

    ADS  MathSciNet  Google Scholar 

  38. X. Gao, M. Yamaguchi, and D. Yoshida, J. Cosmol. Astropart. Phys. 2019, 6 (2019), arXiv: 1810.07434.

    Google Scholar 

  39. C. Germani, A. Kehagias, and K. Sfetsos, J. High Energy Phys. 9, 60 (2009), arXiv: 0906.1201.

    ADS  Google Scholar 

  40. D. Blas, O. Pujolás, and S. Sibiryakov, J. High Energy Phys. 10, 29 (2009), arXiv: 0906.3046.

    ADS  Google Scholar 

  41. T. Jacobson, Phys. Rev. D 81, 101502 (2010), arXiv: 1001.4823.

    ADS  MathSciNet  Google Scholar 

  42. D. Blas, O. Pujolás, and S. Sibiryakov, J. High Energy Phys. 4, 18 (2011).

    ADS  Google Scholar 

  43. J. Chagoya, and G. Tasinato, Class. Quantum Grav. 36, 075014 (2019), arXiv: 1805.12010.

    ADS  Google Scholar 

  44. X. Gao, and Y. M. Hu, arXiv: 2004.07752 gr-qc.

  45. R. Orús, Ann. Phys. 349, 117 (2014), arXiv: 1306.2164.

    ADS  MathSciNet  Google Scholar 

  46. J. C. Bridgeman, and C. T. Chubb, J. Phys. A-Math. Theor. 50, 223001 (2017), arXiv: 1603.03039.

    ADS  Google Scholar 

  47. J. B. Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui, and G. Tasinato, J. High Energy Phys. 12, 100 (2016).

    ADS  Google Scholar 

  48. A. Wang, Int. J. Mod. Phys. D 26, 1730014 (2017), arXiv: 1701.06087.

    ADS  Google Scholar 

  49. T. Jacobson, and D. Mattingly, Phys. Rev. D 64, 024028 (2001), arXiv: gr-qc/0007031.

    ADS  MathSciNet  Google Scholar 

  50. T. Zhu, F. W. Shu, Q. Wu, and A. Wang, Phys. Rev. D 85, 044053 (2012), arXiv: 1110.5106.

    ADS  Google Scholar 

  51. T. Jacobson, PoS QG-PH, 20 (2007), arXiv: 0801.1547.

    Google Scholar 

  52. T. Jacobson, and A. J. Speranza, arXiv: 1405.6351gr-qc.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Gao.

Additional information

I would like to thank M. Crisostomi for the discussion. This work was supported by the National Natural Science Foundation of China (Grant No. 11975020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X. Higher derivative scalar-tensor monomials and their classification. Sci. China Phys. Mech. Astron. 64, 210012 (2021). https://doi.org/10.1007/s11433-020-1607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1607-3

Navigation