Skip to main content
Log in

Electrically pumped terahertz laser based on a topological insulator quantum dot array

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The energy level separation between the edge states in topological insulator quantum dots lies in the terahertz (THz) range. Quantum confinement ensures the nonuniformity of the energy level separation near the Dirac point. Based on these features, we propose that a topological insulator quantum dot array can be operated as an electrically pumped continuous-wave THz laser. The proposed device can operate at room temperature, with power exceeding 10 mW and quantum efficiency reaching ∼50%. This study may promote the usage of topological insulator quantum dots as an important source of THz radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005), arXiv: cond-mat/0411737.

    Article  ADS  Google Scholar 

  2. C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005), arXiv: cond-mat/0506581.

    Article  ADS  Google Scholar 

  3. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006), arXiv: cond-mat/0611399.

    Article  ADS  Google Scholar 

  4. M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science 318, 766 (2007), arXiv: 0710.0582.

    Article  ADS  Google Scholar 

  5. M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010), arXiv: 1002.3895.

    Article  ADS  Google Scholar 

  6. X. L. Qi, and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011), arXiv: 1008.2026.

    Article  ADS  Google Scholar 

  7. C. Wu, B. A. Bernevig, and S. C. Zhang, Phys. Rev. Lett. 96, 106401 (2006), arXiv: cond-mat/0508273.

    Article  ADS  Google Scholar 

  8. D. Kong, and Y. Cui, Nat. Chem. 3, 845 (2011).

    Article  Google Scholar 

  9. K. Chang, and W. K. Lou, Phys. Rev. Lett. 106, 206802 (2011), arXiv: 1010.4153.

    Article  ADS  Google Scholar 

  10. B. Zhou, H. Z. Lu, R. L. Chu, S. Q. Shen, and Q. Niu, Phys. Rev. Lett. 101, 246807 (2008), arXiv: 0806.4810.

    Article  ADS  Google Scholar 

  11. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 460, 1101 (2009), arXiv: 1001.1590.

    Article  ADS  Google Scholar 

  12. A. Roth, C. Brune, H. Buhmann, L. W. Molenkamp, J. Maciejko, X. L. Qi, and S. C. Zhang, Science 325, 294 (2009), arXiv: 0905.0365.

    Article  ADS  Google Scholar 

  13. E. B. Sonin, Phys. Rev. B 82, 113307 (2010), arXiv: 1006.5218.

    Article  ADS  Google Scholar 

  14. Q. Liu, C. X. Liu, C. Xu, X. L. Qi, and S. C. Zhang, Phys. Rev. Lett. 102, 156603 (2009), arXiv: 0808.2224.

    Article  ADS  Google Scholar 

  15. J. J. Zhu, D. X. Yao, S. C. Zhang, and K. Chang, Phys. Rev. Lett. 106, 097201 (2011), arXiv: 1010.4134.

    Article  ADS  Google Scholar 

  16. L. Fu, and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008), arXiv: 0707.1692.

    Article  ADS  Google Scholar 

  17. Y. Ran, A. Vishwanath, and D. H. Lee, Phys. Rev. Lett. 101, 086801 (2008), arXiv: 0801.0627.

    Article  ADS  Google Scholar 

  18. J. Linder, T. Yokoyama, and A. Sudbø, Phys. Rev. B 80, 205401 (2009), arXiv: 0908.2992.

    Article  ADS  Google Scholar 

  19. O. V. Yazyev, J. E. Moore, and S. G. Louie, Phys. Rev. Lett. 105, 266806 (2010), arXiv: 1012.1083.

    Article  ADS  Google Scholar 

  20. G. Li, N. Yang, J. L. Zhu, J. Lu, and J. Wu, J. Appl. Phys. 124, 164301 (2018).

    Article  ADS  Google Scholar 

  21. Y. Huang, W. Lou, F. Cheng, W. Yang, and K. Chang, Phys. Rev. Appl. 12, 034003 (2019).

    Article  ADS  Google Scholar 

  22. J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010), arXiv: 0907.2239.

    Article  ADS  Google Scholar 

  23. B. S. Williams, Nat. Photonics 1, 517 (2007).

    Article  ADS  Google Scholar 

  24. M. Lee, and M. C. Wanke, Science 316, 64 (2007).

    Article  Google Scholar 

  25. Y. S. Liu, K. J. Wu, C. L. Liu, G. Q. Cui, C. Chang, and G. Z. Liu, Sci. China-Phys. Mech. Astron. 63, 274211 (2020).

    Article  Google Scholar 

  26. W. X. Leng, Q. Y. Li, R. M. Bao, K. Zhao, X. Y. Miao, and Y. Z. Li, Sci. China-Phys. Mech. Astron. 62, 014221 (2019).

    Article  Google Scholar 

  27. B. Ferguson, and X. C. Zhang, Nat. Mater. 1, 26 (2002).

    Article  ADS  Google Scholar 

  28. M. Tonouchi, Nat. Photonics 1, 97 (2007).

    Article  ADS  Google Scholar 

  29. Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, Nat. Photonics 3, 732 (2009).

    Article  ADS  Google Scholar 

  30. S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, Nat. Phys. 7, 166 (2011).

    Article  Google Scholar 

  31. D. M. Mittleman, Nat. Photonics 7, 666 (2013).

    Article  ADS  Google Scholar 

  32. M. A. Belkin, and F. Capasso, Phys. Scr. 90, 118002 (2015).

    Article  ADS  Google Scholar 

  33. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, Appl. Phys. Lett. 104, 221105 (2014).

    Article  ADS  Google Scholar 

  34. J. Hinz, H. Buhmann, M. Schäfer, V. Hock, C. R. Becker, and L. W. Molenkamp, Semicond. Sci. Technol. 21, 501 (2006).

    Article  ADS  Google Scholar 

  35. J. Li, W. K. Lou, D. Zhang, X. J. Li, W. Yang, and K. Chang, Phys. Rev. B 90, 115303 (2014).

    Article  ADS  Google Scholar 

  36. D. Liu, S. H. Zhang, Y. Huang, J. Li, J. Qu, and W. Yang, Phys. Rev. B 98, 245310 (2018).

    Article  ADS  Google Scholar 

  37. N. Zhuo, F. Liu, J. Zhang, L. Wang, J. Liu, S. Zhai, and Z. Wang, Nanoscale Res. Lett. 9, 144 (2014).

    Article  ADS  Google Scholar 

  38. B. A. Burnett, and B. S. Williams, Opt. Express 24, 25471 (2016).

    Article  ADS  Google Scholar 

  39. A. Mittelstadt, L. A. T. Greif, S. T. Jagsch, and A. Schliwa, arXiv: 1912.03988.

  40. E. Tsitsishvili, G. S. Lozano, and A. O. Gogolin, Phys. Rev. B 70, 115316 (2004), arXiv: cond-mat/0310024.

    Article  ADS  Google Scholar 

  41. J. Zhang, B. Zhu, and K. Huang, Phys. Rev. B 59, 13184 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Yang or Kai Chang.

Additional information

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000), the National Natural Science Foundation of China (Grant Nos. 61674145, 11974340, 11434010, 11574303, and 11774021), the Ministry of Science and Technology of the People’s Republic of China (Grant Nos. 2018YFA0306101, and 2017YFA0303400), the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SYS001, and XXH13506-202), and the NSFC program for the “Scientific Research Center” (Grant No. U1930402).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Shi, L., Li, J. et al. Electrically pumped terahertz laser based on a topological insulator quantum dot array. Sci. China Phys. Mech. Astron. 64, 217211 (2021). https://doi.org/10.1007/s11433-020-1604-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1604-2

Navigation