Skip to main content
Log in

Asymptotics of the Number of Restricted Partitions

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \(0<t_1\le t_2\le t_3\le\dotsm\) be a given sequence of real numbers, and let \(\rho(t):=\sum_{j\colon t_j\le t}1\) be its counting function. We assume that \(\rho(t)=\rho_0t^\gamma(1+o(1))\) as \(t\to\infty\) for some \(\rho_0,\gamma>0\). For any \(T>0\) and \(k\in\overline{\mathbb{N}}=\mathbb{N}\cup\{\infty\}\), let \(N(k,T)\) be the number of solutions \(\{n_j\}_{j=1}^k\), \(n_j\in \mathbb{N}_0=\mathbb{N}\cup\{0\}\), of the inequality \(\sum_{j=1}^{k}n_jt_j\le T\). We are interested in the asymptotics of \(\log N(k,T)\) as \(T\to\infty\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Andrews, The Theory of Partitions, Addison–Wesley, London (1976).

    MATH  Google Scholar 

  2. J. Knopfmacher, Abstract Analytic Number Theory, North-Holland, Amsterdam (1975).

    MATH  Google Scholar 

  3. B. M. Bredikhin, “Elementary Solution of Inverse Problems on Bases of Free Semigroups,” Mat. Sb., 50(92), 221–232 (1960).

    MathSciNet  Google Scholar 

  4. A. G. Postnikov, Introduction to Analytic Number Theory, Amer. Math. Soc., Providence, RI (1988).

    Book  Google Scholar 

  5. A. Beurling, “Analyse de la loi asymptotique de la distribution des nombres premiers généralisés: I,” Acta Math., 68, 255–291 (1937).

    Article  MathSciNet  Google Scholar 

  6. T. W. Hilberdink and M. L. Lapidus, “Beurling Zeta Functions, Generalised Primes, and Fractal Membranes,” Acta Appl. Math., 94, 21–48 (2006).

    Article  MathSciNet  Google Scholar 

  7. E. Schrödinger, Statistical Thermodynamics, Cambridge University Press, Cambridge (1946).

    MATH  Google Scholar 

  8. L. D. Landau and E. M. Lifshitz, Statistical Physics: Pt. 1, Pergamon Press, Oxford (1969).

    Google Scholar 

  9. F. C. Auluck and D. S. Kothari, “Statistical Mechanics and the Partitions of Numbers,” Math. Proc. Cambridge Phil. Soc., 42, 272–277 (1946).

    Article  MathSciNet  ADS  Google Scholar 

  10. B. K. Agarwala and F. C. Auluck, “Statistical Mechanics and Partitions Into Non-Integral Powers of Integers,” Math. Proc. Cambridge Phil. Soc., 47, 207–216 (1951).

    Article  MathSciNet  ADS  Google Scholar 

  11. V. P. Maslov, “Quasithermodynamics and a Correction to the Stefan–Boltzmann Law,” Mat. Notes, 83, 77–85 (2008).

    MathSciNet  MATH  Google Scholar 

  12. V. P. Maslov, “Undistinguishing Statistics of Objectively Distinguishable Objects: Thermodynamics and Superfluidity of Classical Gas,” Math. Notes, 94 (5), 722–813 (2013).

    Article  MathSciNet  Google Scholar 

  13. R. A. Rankin, “The Difference Between Consecutive Prime Numbers,” J. London Math. Soc., 13, 242–247 (1938).

    Article  MathSciNet  Google Scholar 

  14. V. E. Nazaikinskii, “On the Entropy of a Bose–Maslov Gas,” Dokl. Math., 87, 50–52 (2013).

    Article  MathSciNet  Google Scholar 

  15. V. E. Nazaikinskii and D. S. Minenkov, “Remark on the Inverse Abstract Prime Number Theorem,” Math. Notes, 100 (4), 627–629 (2016).

    MATH  Google Scholar 

  16. D. S. Minenkov, V. E. Nazaikinskii, and V. L. Chernyshev, “On the Asymptotics of the Element Counting Function in an Additive Arithmetic Semigroup with Exponential Counting Function of Prime Generators,” Funct. Anal. Appl., 50 (4), 291–307 (2016).

    Article  MathSciNet  Google Scholar 

  17. K. S. Kölbig, “Complex Zeros of an Incomplete Riemann Zeta Function and of the Incomplete Gamma Function,” Math. Comput., 24, 679–696 (1970).

    Article  MathSciNet  Google Scholar 

  18. P. Erdős and J. Lehner, “The Distribution of the Number of Summands in the Partitions of a Positive Integer,” Duke Math. J., 8, 335–345 (1941).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to D. S. Minenkov for useful discussions.

Funding

V. Chernyshev’s research was carried out within the framework of the Basic Research Program at HSE University and funded by the Russian Academic Excellence Project “5-100”. The research of V. Nazaikinskii was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the Russian State Assignment under contract no. AAAA-A20-120011690131-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Chernyshev.

Appendix A. Proof of Lemma 2

Let us introduce the unified notation

$$\Phi_m(k,\xi)=(-1)^m \frac{\partial^m\Phi}{\partial\xi^m}(k,\xi), \qquad m=0,1,2,$$
for the three functions (3.2) and (3.8). They can be represented as
$$\Phi_m(k,\xi) =\xi^{-m}F_m(k,\xi),\quad \text{where}\quad F_m(k,\xi)=\sum_{j=1}^{k}G_m(\xi t_j),$$
(A.1)
$$G_0(x) =\log\frac{1}{1-e^{-x}},\quad G_1(x)=\frac{x}{e^x-1},\quad G_2(x)=\frac{x^2 e^x}{(e^x-1)^2}.$$
(A.2)
The functions \(G_m(x)\) are smooth and positive on \((0,\infty)\) and, together with all derivatives, exponentially decay as \(x\to\infty\). Further, \(G_1(x)\) and \(G_2(x)\) are smooth on \([0,\infty)\) and satisfy \(G_1(0)=G_2(0)=1\), while \(G_0(x)\) has a logarithmic singularity at \(x=0\). Let us compute \(F=F_m\), where \(m=0\), \(1\), or \(G_2\). We write \(\rho_{\text{as}}(t)=t^\gamma\) and \(\tau_k=k^{1/\gamma}\). Then
$$\begin{aligned} \, F(k,\xi) =&\int_0^{t_k}G(\xi t)d\rho(t) =\int_0^{\tau_k}G(\xi t)d\rho_{\text{as}}(t) +\int_{\tau_k}^{t_k}G(\xi t)d\rho_{\text{as}}(t) {}+\int_0^{t_k}G(\xi t)d(\rho(t)-\rho_{\text{as}}(t)) \\ =&\int_0^{\tau_k}G(\xi t)d\rho_{\text{as}}(t) -\xi\int_{\tau_k}^{t_k}G'(\xi t)\rho_{\text{as}}(t)\,dt +G(\xi t)\rho_{\text{as}}(t)\big|_{\tau_k}^{t_k} +G(\xi t)(\rho(t)-\rho_{\text{as}}(t))\big|_{0}^{t_k} \\&-\xi\int_0^{t_k}G'(\xi t)(\rho(t)-\rho_{\text{as}}(t))\,dt. \end{aligned}$$
The integrated terms give
$$\begin{aligned} \, G(\xi t)\rho_{\text{as}}(t)\big|_{\tau_k}^{t_k} +G(\xi t)(\rho(t)-\rho_{\text{as}}(t))\big|_{0}^{t_k} &=G(\xi t_k)\rho(t_k)-G_m(\xi\tau_k)\rho_{\text{as}}(\tau_k) =k(G(\xi t_k)-G(\xi\tau_k)) \\ &=\xi\tau_k^\gamma\int_{\tau_k}^{t_k}G'(\xi t)\,dt. \end{aligned}$$
Here we have used the fact that \(\rho_{\text{as}}(\tau_k)=\rho(t_k)=k\); further, \(\rho(t)-\rho_{\text{as}}(t)=-\rho_{\text{as}}(t)=-t^\gamma\) for \(t<t_1\), and hence \(\lim_{t\to0}G(\xi t)(\rho(t)-\rho_{\text{as}}(t))=0\) even for the case of \(m=0\), where \(G\) has a logarithmic singularity at zero. We make the change of variables \(x=\xi t\) and finally write
$$F(k,\xi)=\xi^{-\gamma}(\gamma I(k,\xi)-R_1(k,\xi)-R_2(k,\xi)),$$
where (we omit the arguments \((k,\xi)\) for brevity):
$$ \begin{aligned} \, I &= \int_0^{\xi\tau_k}G(x)x^{\gamma-1}\,dx, \quad R_1 =\int_{\xi\tau_k}^{\xi t_k}G'(x) (x^\gamma-(\xi\tau_k)^\gamma)\, dx. \\ R_2 &=\int_0^{\xi t_k}G'(x)\theta\biggl(\frac x\xi\biggr)x^\gamma\,dx, \quad \theta(t)=\frac{\rho(t)-\rho_{\text{as}}(t)}{\rho_{\text{as}}(t)} \xrightarrow{\,t\to\infty\,}0. \end{aligned}$$
(A.3)
We will prove that \(R_j/I\to0\) uniformly with respect to \(k\in\mathbb{N}\) as \(\xi\to0\) and hence \(F\sim\gamma\xi^{-\gamma} I\). As a by-product, we will also obtain asymptotic estimates for \(F\).

First, let us make some preliminary remarks. Note that \(\theta(t)=-1\) for \(t\in(0,t_1)\), and so we readily see that \(\theta(t)\) is uniformly bounded on \((0,\infty)\). Further, \(\tau_k^\gamma-t_k^\gamma=\rho(t_k)-\rho_{\text{as}}(t_k) =\theta(t_k)t_k^\gamma\), and hence \(\tau_k/t_k=(1+\theta(t_k))^{1/\gamma}\). Consequently, there exists a \(C_0>1\) such that

$$C_0^{-1}\le \frac{t_k}{\tau_k}\le C_0\quad \text{for all $k\in\mathbb{N}$ and } \lambda_k:=\frac{t_k}{\tau_k}-1\xrightarrow{\,k\to\infty\,}0.$$
As a first consequence, we note that \(x^\gamma\le C_0^\gamma(\xi\tau_k)^\gamma\) on the integration interval in the expression for \(R_1\) in (A.3), and so
$$ \lvert{R_1}\rvert\le\widetilde R_1=\operatorname{const} \lambda_k(\xi\tau_k)^{\gamma+1} \max_{\alpha\in[C_0^{-1},C_0]} \lvert{G'(\alpha\xi\tau_k)}\rvert.$$
(A.4)
Now let us carry out the desired estimates. We do this separately for \(m=1,2\) and for \(m=0\).

Appendix A.1. 1. Case of \(m\in\{1,2\}\).

Since \(G(0)=1\), \(G(x)>0\) for all \(x\in[0,\infty)\), and is a convergent integral \(\int_{0}^{\infty} x^{\gamma-1}G(x)\,dx\) converges, the formula for \(I\) in (A.3) implies

$$ I\asymp (\xi\tau_k)^\gamma\text{ for $\xi\tau_k\le1$ and } I\asymp 1\text{ for $\xi\tau_k\ge1$.}$$
(A.5)
Since \(G'(x)\) is continuous on \([0,\infty)\) and decays exponentially as \(x\to\infty\), it follows from (A.4) and (A.5) that
$$ \frac{R_1}{I}=O(\lambda_k\xi\tau_k)\text{ for $\xi\tau_k\le1$ and } \frac{R_1}{I}=O(\lambda_k)\text{ for $\xi\tau_k\ge1$.}$$
(A.6)
Further, for \(R_2\) we obtain
$$\begin{aligned} \, &\lvert{R_2}\rvert\le\operatorname{const}\int_0^{\xi t_k}\biggl\vert\theta\biggl(\frac x\xi\biggr)\biggr\vert x^\gamma\,dx \le \operatorname{const}(\xi\tau_k)^{\gamma+1}\widetilde\lambda_k \text{ for $\xi\tau_k\le1$,} \\ &\text{where }\widetilde\lambda_k=\int_{0}^{1} \lvert{\theta(yt_k)}\rvert y^\gamma\,dy, \quad\text{and $\widetilde\lambda_k\xrightarrow{\,k\to\infty\,}0$} \end{aligned}$$
by Lebesgue’s dominated convergence theorem. For \(\xi\tau_k\ge1\), we have
$$\lvert{R_2}\rvert\le\int_0^{\infty}\biggl\vert G'(x)\theta\biggl(\frac x\xi\biggr)\biggr\vert x^\gamma\,dx=:R(\xi)\xrightarrow{\,\varepsilon\to0\,}0,$$
again by Lebesgue’s dominated convergence theorem. Thus,
$$ \frac{R_2}{I}=O(\widetilde \lambda_k\xi\tau_k)\text{ for $\xi\tau_k\le1$ and } \frac{R_2}{I}\stackrel{\xi\to0}\rightrightarrows0\text{ for $\xi\tau_k\ge1$.}$$
(A.7)
Now we make use of the following lemma:

Lemma A.1.

Let \(f(k,\xi)=g(k)h(\xi k^{1/\gamma})\) , \((k,\xi)\in\mathbb{N}\times (0,1)\) , where \(g(k)\le G\) and \(h(x)\le H\) are nonnegative bounded functions, \(g(k)\xrightarrow{\,k\to\infty\,}0\) and \(h(x)\xrightarrow{\,x\to0\,}0\) . Then for each \(\varepsilon>0\) there exists a \(\delta>0\) such that \(f(k,\xi)<\varepsilon\) whenever \(\xi<\delta\) .

Proof.

Without loss of generality, we can assume that \(g(k)\) and \(h(x)\) are monotone functions. Now, for an arbitrary \(k_0\in\mathbb{N}\), \(f(k,\xi)\le g(k_0)H\) for \(k\ge k_0\) and \(f(k,\xi)\le Gh(\xi k_0^{1/\gamma})\) for \(k\le k_0\), and we conclude that

$$f(k,\xi)\le \max\{g(k_0)H,Gh(\xi k_0^{1/\gamma})\}$$
for all \(k\) and \(\xi\). Given an \(\varepsilon>0\), pick a \(k_0\) such that \(g(k_0)H<\varepsilon\) and then take a \(\delta>0\) such that \(Gh(\xi k_0^{1/\gamma})<\varepsilon\) for \(\xi<\delta\).

It follows from (A.6) by virtue of this lemma with \(g(k)=\lambda_k\) and \(h(x)=\min\{1,x\}\) that we have \(R_1/I\xrightarrow{\,\varepsilon\to0\,}0\) uniformly with respect to \(k\). To prove that \(R_2/I\xrightarrow{\,\varepsilon\to0\,}0\) uniformly with respect to \(k\), we use the first relation in (A.7) and apply Lemma A.1 with \(g(k)=\widetilde\lambda_k\) and with the same \(h(x)\); this proves the desired uniform convergence in the domain \(\xi\tau_k\le1\), while for \(\xi\tau_k\ge1\) we already have what we need by the second relation in (A.7).

Appendix A.2. 2. Case of \(m=0\).

We integrate by parts in the expression (A.3) for \(I\) with

$$G(x)=G_0(x)=\log(1-e^{-x})^{-1},$$
obtaining
$$ \gamma I=I_1+I_2,\quad I_1=(\xi\tau_k)^\gamma\log\frac{1}{1-e^{-\xi\tau_k}},\quad I_2=\int_0^{\xi\tau_k}\frac{x^\gamma\,dx}{e^x-1}.$$
(A.8)
By the same reasoning as for (A.5), we have
$$ I_2\asymp (\xi\tau_k)^\gamma\text{ for $\xi\tau_k\le1$ and } I_2\asymp 1\text{ for $\xi\tau_k\ge1$.}$$
(A.9)
The function \(\log(1-e^{-x})^{-1}\) tends to \(\infty\) as \(x\to0\) and decays exponentially as \(x\to\infty\). Hence, in view of (A.9), the term \(I_1\) dominates in the sum \(I_1+I_2\) for small \(\xi\tau_k\), and the term \(I_2\) dominates for large \(\xi\tau_k\), and so we can write
$$ I\asymp (\xi\tau_k)^\gamma\log\frac{1}{1-e^{-\xi\tau_k}}\text{ for $\xi\tau_k\le1$ and } I\asymp 1\text{ for $\xi\tau_k\ge1$.}$$
(A.10)
Now note that \(G'(x)=-(e^x-1)^{-1}\), and so we can conclude from (A.4) and that
$$ \begin{aligned} \, \frac{R_1}{I}&=O\biggl(\lambda_k \biggl(\log\frac{1}{1-e^{-\xi\tau_k}}\biggr)^{-1}\biggr)\text{ for $\xi\tau_k\le1$ and }\\ \frac{R_1}{I}&=O(\lambda_k)\text{ for $\xi\tau_k\ge1$.} \end{aligned}$$
(A.11)
Now we apply Lemma A.1 with \(g(k)=\lambda_k\) and
$$h(x)=\biggl(\log\frac{1}{1-e^{-x}}\biggr)^{-1},\quad x\le1;\qquad h(x)=1,\quad x>1$$
and find that \(R_1/I\xrightarrow{\,\varepsilon\to0\,}0\) uniformly with respect to \(k\). As to the convergence of \(R_2/I\), the reasoning remains the same as in the case of \(m=1,2\) with the only difference that
$$\widetilde\lambda_k=\int_{0}^{1} \lvert{\theta(yt_k)}\rvert y^{\gamma-1}\,dy.$$
One factor \(y\) has been used to compensate for the zero of the denominator \(e^y-1\).

Formulas (A.10) and (A.5) give the desired asymptotic estimates (3.13), while formulas (A.3) and (A.8) for \(I\) and (A.2) for \(G_j\), together with the definition of the incomplete zeta function, result in the asymptotics (3.14) and (3.15). The proof of Lemma 3.1 is complete. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyshev, V.L., Hilberdink, T.W. & Nazaikinskii, V.E. Asymptotics of the Number of Restricted Partitions. Russ. J. Math. Phys. 27, 456–468 (2020). https://doi.org/10.1134/S1061920820040056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920820040056

Navigation