Skip to main content
Log in

Development of a highly-permeable thin-film-based nanofiltration membrane by using surface treatment with Air-Ar plasma

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Surface modification of thin-film nanofiltration membranes was carried out to produce high water permeable NF membranes by Air-Ar plasma treatment. The effect of composition of used gases on membrane properties was investigated. Results showed that the plasma treatment decreased the water contact angle obviously from 80.4° to 6.5°, which in turn would increase the membrane surface hydrophilicity. The results of FTIR spectra decisively confirmed the formation of hydrophilic nitrogen and oxygen compounds on the membrane surface. The SEM images of membrane surface also showed significant changes after plasma treatment. AFM analysis indicated smoother surface for the modified membranes compared to pristine membrane; the roughness declined from 55.85 nm for virgin membrane to 28.33 nm for modified membranes. The salt rejection was 90% for pristine membrane and 76.35% to 92.45% for the plasma treated membranes. The water flux for modified membrane treated by 50% Air-50% Ar plasma increased ∼1,446.1% compared to the virgin membrane, whereas the selectivity declined only ∼15.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. W. Adamson and A. P. Gast, Physical chemistry of surfaces, Wiley-Interscience, New York (1997).

    Google Scholar 

  2. J. M. Luque-Alled, A. Abdel-Karim, M. Alberto, S. Leaper, M. Perez-Page, K. Huang, A. Vijayaraghavan, A. S. El-Kalliny, S. M. Holmes and P. Gorgojo, Sep. Purif. Technol., 230, 115836 (2020).

    Article  CAS  Google Scholar 

  3. S. Khoee and Y Bageri, Polymerization, 5, 16 (2015).

    Google Scholar 

  4. M.A. Shahmirzadi, S.S. Hosseini, G. Ruan and N.R. Tan, RSC Adv., 5, 49080 (2015).

    Article  Google Scholar 

  5. C. Zhao, J. Xue, F. Ran and S. Sun, Prog. Mater Sci., 58, 76 (2013).

    Article  CAS  Google Scholar 

  6. M. L. Luo, J. Q. Zhao, W Tang and C. S. Pu, Appl. Surf. Sci, 249, 76 (2005).

    Article  CAS  Google Scholar 

  7. S. S. Hosseini, S. F. Torbati, M. A. Shahmirzadi and T. Tavangar, Polym. Adv. Technol, 29, 2619 (2018).

    Article  CAS  Google Scholar 

  8. F. Amiri, A. R. Moghadassi, E. Bagheripour and F. Parvizian, J. Mem. Sci. Res., 3, 50 (2017).

    Google Scholar 

  9. F. D. Egitto, Pure Appl. Chem, 62, 1699 (1990).

    Article  CAS  Google Scholar 

  10. N. Inagaki, Plasma surface modification and plasma polymerization, CRC press, Boca Raton, FL (1996).

    Google Scholar 

  11. R. A. Wolf, Atmospheric pressure plasma for surface modification, Wiley, Hoboken, NJ (2012).

    Book  Google Scholar 

  12. B.N. Chapman, Glow discharge processes: Sputtering and plasma etching, Wiley-Interscience, New York (1980).

    Google Scholar 

  13. C. M. Chan, T. M. Ko and H. Hiraoka, Surf. Sci. Rep, 24, 1 (1996).

    Article  CAS  Google Scholar 

  14. I. Pinnau and B. D. Freeman, Advanced materials for membrane separations, American Chemical Society, Washington DC (2004).

    Book  Google Scholar 

  15. S. M. Kim, Surface nano-structuring of polysulfone membranes by atmospheric pressure plasma-induced graft polymerization (APPIGP), University of California, Los Angeles (2013).

    Google Scholar 

  16. B. Farokhi, M. Rezaaei, Z. Kiamehr and S. M. Hosseini, Int. J. Eng. (IJE), 32, 354 (2019).

    CAS  Google Scholar 

  17. N. Saxena, C. Prabhavathy, S. De and S. Das Gupta, Sep. Purif. Technol., 70, 160 (2009).

    Article  CAS  Google Scholar 

  18. F. Zareei and S. M. Hosseini, Sep. Purif. Technol, 226, 48 (2019).

    Article  CAS  Google Scholar 

  19. H. S. Lee, S. J. Im, J. H. Kim, H.J. Kim, J.P. Kim and B.R. Min, Desalination, 219, 48 (2008).

    Article  CAS  Google Scholar 

  20. I. Sadeghi, A. Aroujalian, A. Raisi and B. Dabir, J. Membr. Sci., 430, 24 (2013).

    Article  CAS  Google Scholar 

  21. E. Jashni, S. M. Hosseini and J. N. Shen, Ionics, 26, 861 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors gratefully acknowledge Arak University for the financial support during this research. Zeynab Kiamehr is also thankful to Mrs. Samaneh Koudzari Farahani from Arak University, for the all useful help and discussions during the separation experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bijan Farokhi or Sayed Mohsen Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiamehr, Z., Farokhi, B. & Hosseini, S.M. Development of a highly-permeable thin-film-based nanofiltration membrane by using surface treatment with Air-Ar plasma. Korean J. Chem. Eng. 38, 114–120 (2021). https://doi.org/10.1007/s11814-020-0665-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0665-4

Keywords

Navigation